拟南芥
生物
领域(数学分析)
环境科学
基因
突变体
天体生物学
遗传学
数学
数学分析
作者
Jae‐Hoon Jung,António Daniel Barbosa,Stephanie Hutin,Janet R. Kumita,Ming‐Jun Gao,Dorothee Derwort,Catarina S. Silva,Xuelei Lai,Elodie Pierre,Feng Geng,Sol-Bi Kim,Sujeong Baek,Chloé Zubieta,Katja E. Jaeger,Philip A. Wigge
出处
期刊:Nature
[Springer Nature]
日期:2020-08-26
卷期号:585 (7824): 256-260
被引量:403
标识
DOI:10.1038/s41586-020-2644-7
摘要
Temperature controls plant growth and development, and climate change has already altered the phenology of wild plants and crops1. However, the mechanisms by which plants sense temperature are not well understood. The evening complex is a major signalling hub and a core component of the plant circadian clock2,3. The evening complex acts as a temperature-responsive transcriptional repressor, providing rhythmicity and temperature responsiveness to growth through unknown mechanisms2,4-6. The evening complex consists of EARLY FLOWERING 3 (ELF3)4,7, a large scaffold protein and key component of temperature sensing; ELF4, a small α-helical protein; and LUX ARRYTHMO (LUX), a DNA-binding protein required to recruit the evening complex to transcriptional targets. ELF3 contains a polyglutamine (polyQ) repeat8-10, embedded within a predicted prion domain (PrD). Here we find that the length of the polyQ repeat correlates with thermal responsiveness. We show that ELF3 proteins in plants from hotter climates, with no detectable PrD, are active at high temperatures, and lack thermal responsiveness. The temperature sensitivity of ELF3 is also modulated by the levels of ELF4, indicating that ELF4 can stabilize the function of ELF3. In both Arabidopsis and a heterologous system, ELF3 fused with green fluorescent protein forms speckles within minutes in response to higher temperatures, in a PrD-dependent manner. A purified fragment encompassing the ELF3 PrD reversibly forms liquid droplets in response to increasing temperatures in vitro, indicating that these properties reflect a direct biophysical response conferred by the PrD. The ability of temperature to rapidly shift ELF3 between active and inactive states via phase transition represents a previously unknown thermosensory mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI