Relating the 3D Geometry and Photoelectrochemical Activity of WO3-Loaded n-Si Nanowires: Design Rules for Photoelectrodes

纳米线 材料科学 纳米技术 几何学 化学工程 光电子学 数学 工程类
作者
Anja Bieberle‐Hütter,Yihui Zhao,Shashank Balasubramanyam,Ageeth A. Bol
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:3 (10): 9628-9634 被引量:3
标识
DOI:10.1021/acsaem.0c01115
摘要

Nanostructured electrodes for photoelectrochemical (PEC) applications, such as water splitting, have a rather low photocurrent density regarding their highly enlarged surface area compared to plain electrodes. This demands for further understanding of the relation between the three-dimensional (3D) geometry and the PEC activity. To this end, we fabricate WO3/Si nanowire array photoanodes with various nanowire lengths (1.3, 2.7, 3.2, and 3.8 μm) and different WO3 thicknesses (10, 30, and 50 nm) using wet chemical etching for nanostructuring of Si and atomic layer deposition for the deposition of WO3. It is found that by increasing the etching time, the nanowires become longer and the top surface area decreases. The photocurrent density first increases and then decreases with increasing Si etching time. This behavior can be explained by different and opposite effects regarding absorption, geometry, and material-specific properties. Particularly, the decrease of the photocurrent density can be due to: (1) the longer the nanowires, the heavier the recombination of the photogenerated carriers and (2) the long-time Si etching results in a loss of top part of the nanowire arrays. Because of shadowing, the WO3 located at the top part of the nanowires is more effective than that at the bottom part for the WO3/Si nanowire arrays and therefore the photocurrent is decreased. It reveals a trade-off between the top part surface area and the length of the nanowires. This study contributes to a better understanding of the relation between the geometry of nanostructures and the performance of PEC electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福发布了新的文献求助10
2秒前
2秒前
qingzhiwu发布了新的文献求助10
2秒前
6秒前
7秒前
大力翠阳发布了新的文献求助10
7秒前
nuoyefenfei完成签到,获得积分10
8秒前
忧郁山槐完成签到 ,获得积分10
8秒前
10秒前
科研通AI5应助乐观的代桃采纳,获得10
13秒前
16秒前
Sephirex发布了新的文献求助10
16秒前
MJ完成签到,获得积分10
16秒前
17秒前
酷波er应助好多多的海采纳,获得10
19秒前
20秒前
半。。发布了新的文献求助10
21秒前
李123发布了新的文献求助10
21秒前
wangli发布了新的文献求助10
24秒前
lxcy0612完成签到,获得积分10
24秒前
25秒前
26秒前
28秒前
28秒前
xxy完成签到,获得积分20
30秒前
务实的听筠完成签到,获得积分10
31秒前
32秒前
qingzhiwu完成签到,获得积分10
32秒前
Ninico发布了新的文献求助10
33秒前
李123完成签到,获得积分10
33秒前
34秒前
35秒前
36秒前
37秒前
39秒前
123456完成签到,获得积分10
39秒前
好多多的海完成签到,获得积分10
39秒前
39秒前
linda268完成签到,获得积分10
39秒前
sun完成签到,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775612
求助须知:如何正确求助?哪些是违规求助? 3321229
关于积分的说明 10204285
捐赠科研通 3036074
什么是DOI,文献DOI怎么找? 1665997
邀请新用户注册赠送积分活动 797213
科研通“疑难数据库(出版商)”最低求助积分说明 757766