Relating the 3D Geometry and Photoelectrochemical Activity of WO3-Loaded n-Si Nanowires: Design Rules for Photoelectrodes

纳米线 材料科学 纳米技术 几何学 化学工程 光电子学 数学 工程类
作者
Anja Bieberle‐Hütter,Yihui Zhao,Shashank Balasubramanyam,Ageeth A. Bol
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:3 (10): 9628-9634 被引量:3
标识
DOI:10.1021/acsaem.0c01115
摘要

Nanostructured electrodes for photoelectrochemical (PEC) applications, such as water splitting, have a rather low photocurrent density regarding their highly enlarged surface area compared to plain electrodes. This demands for further understanding of the relation between the three-dimensional (3D) geometry and the PEC activity. To this end, we fabricate WO3/Si nanowire array photoanodes with various nanowire lengths (1.3, 2.7, 3.2, and 3.8 μm) and different WO3 thicknesses (10, 30, and 50 nm) using wet chemical etching for nanostructuring of Si and atomic layer deposition for the deposition of WO3. It is found that by increasing the etching time, the nanowires become longer and the top surface area decreases. The photocurrent density first increases and then decreases with increasing Si etching time. This behavior can be explained by different and opposite effects regarding absorption, geometry, and material-specific properties. Particularly, the decrease of the photocurrent density can be due to: (1) the longer the nanowires, the heavier the recombination of the photogenerated carriers and (2) the long-time Si etching results in a loss of top part of the nanowire arrays. Because of shadowing, the WO3 located at the top part of the nanowires is more effective than that at the bottom part for the WO3/Si nanowire arrays and therefore the photocurrent is decreased. It reveals a trade-off between the top part surface area and the length of the nanowires. This study contributes to a better understanding of the relation between the geometry of nanostructures and the performance of PEC electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheche完成签到,获得积分10
1秒前
liushun完成签到,获得积分10
1秒前
caoyy发布了新的文献求助10
1秒前
zzt发布了新的文献求助10
2秒前
4秒前
4秒前
章家炜发布了新的文献求助10
5秒前
脑洞疼应助xfxx采纳,获得10
5秒前
wanci应助茶博士采纳,获得10
5秒前
所所应助YYT采纳,获得10
6秒前
匿名网友完成签到 ,获得积分10
6秒前
雪白雍完成签到,获得积分10
7秒前
maomao完成签到,获得积分10
7秒前
我是笨蛋完成签到 ,获得积分10
9秒前
酷波er应助caoyy采纳,获得10
10秒前
10秒前
Dreamsli发布了新的文献求助10
11秒前
有只小狗完成签到,获得积分10
12秒前
飞飞完成签到,获得积分10
13秒前
豆dou发布了新的文献求助10
13秒前
Mannone完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
13679165979完成签到,获得积分10
14秒前
Jocelyn7关注了科研通微信公众号
15秒前
Jzhang应助赵小可可可可采纳,获得10
15秒前
wls完成签到 ,获得积分10
16秒前
CC完成签到,获得积分10
16秒前
17秒前
鬼才之眼完成签到 ,获得积分10
17秒前
xfxx发布了新的文献求助10
18秒前
章家炜完成签到,获得积分20
18秒前
18秒前
茶博士发布了新的文献求助10
18秒前
专通下水道完成签到 ,获得积分10
23秒前
23秒前
23秒前
nenoaowu发布了新的文献求助30
23秒前
小马甲应助章家炜采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824