Dynamics Analysis and Design for a Bidirectional Super-Ring-Shaped Neural Network With n Neurons and Multiple Delays

霍普夫分叉 人工神经网络 维数(图论) 分叉 戒指(化学) 理论(学习稳定性) 计算机科学 特征方程 拓扑(电路) 图形 应用数学 网络分析 数学 控制理论(社会学) 理论计算机科学 数学分析 非线性系统 纯数学 人工智能 微分方程 物理 组合数学 机器学习 有机化学 量子力学 化学 控制(管理)
作者
Binbin Tao,Min Xiao,Wei Xing Zheng,Jinde Cao,Jingwen Tang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (7): 2978-2992 被引量:24
标识
DOI:10.1109/tnnls.2020.3009166
摘要

Recently, the dynamics of delayed neural networks has always incurred the widespread concern of scholars. However, they are mostly confined to some simplified neural networks, which are only made up of a small amount of neurons. The main cause is that it is difficult to decompose and analyze generally high-dimensional characteristic matrices. In this article, for the first time, we can solve the computing issues of high-dimensional eigenmatrix by employing the formula of Coates flow graph, and the dynamics is considered for a bidirectional neural network with super-ring structure and multiple delays. Under certain circumstances, the characteristic equation of the linearized network can be transformed into the equation with integration element. By analyzing the equation, we find that the self-feedback coefficient and the delays have significant effects on the stability and Hopf bifurcation of the network. Then, we achieve some sufficient conditions of the stability and Hopf bifurcation on the network. Furthermore, the obtained conclusions are applied to design a standardized high-dimensional network with bidirectional ring structure, and the scale of the standardized high-dimensional network can be easily extended or reduced. Afterward, we propose some designing schemes to expand and reduce the dimension of the standardized high-dimensional network. Finally, the results of theories are coincident with that of experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
潇潇雨歇发布了新的文献求助10
刚刚
2秒前
香蕉觅云应助兴奋的香芦采纳,获得10
3秒前
3秒前
4秒前
diu完成签到,获得积分10
4秒前
坚强的严青应助xff采纳,获得30
6秒前
忧虑的真发布了新的文献求助10
7秒前
8秒前
大方的忻发布了新的文献求助10
9秒前
9秒前
传奇3应助钙钛矿光电突触采纳,获得10
10秒前
11秒前
11秒前
乐乐应助甜甜蛟凤采纳,获得10
11秒前
勤奋幻柏发布了新的文献求助10
11秒前
SciGPT应助sy采纳,获得10
12秒前
李爱国应助seven采纳,获得10
12秒前
重翠发布了新的文献求助10
12秒前
14秒前
没在清醒发布了新的文献求助10
14秒前
14秒前
zyfqpc发布了新的文献求助10
14秒前
15秒前
尊敬的夏槐完成签到,获得积分10
17秒前
黛狮完成签到,获得积分10
17秒前
rover完成签到 ,获得积分10
18秒前
Dave发布了新的文献求助10
18秒前
摘要发布了新的文献求助10
18秒前
N7发布了新的文献求助10
18秒前
南桑完成签到 ,获得积分10
18秒前
19秒前
勤奋幻柏完成签到,获得积分10
21秒前
21秒前
21秒前
Jasper应助Dave采纳,获得10
21秒前
Akim应助Master采纳,获得10
22秒前
传奇3应助Coatings采纳,获得10
24秒前
万能图书馆应助听雨采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148072
求助须知:如何正确求助?哪些是违规求助? 2799096
关于积分的说明 7833514
捐赠科研通 2456285
什么是DOI,文献DOI怎么找? 1307194
科研通“疑难数据库(出版商)”最低求助积分说明 628077
版权声明 601655