Dynamics Analysis and Design for a Bidirectional Super-Ring-Shaped Neural Network With n Neurons and Multiple Delays

霍普夫分叉 人工神经网络 维数(图论) 分叉 戒指(化学) 理论(学习稳定性) 计算机科学 特征方程 拓扑(电路) 图形 应用数学 网络分析 数学 控制理论(社会学) 理论计算机科学 数学分析 非线性系统 纯数学 人工智能 微分方程 物理 组合数学 机器学习 有机化学 量子力学 化学 控制(管理)
作者
Binbin Tao,Min Xiao,Wei Xing Zheng,Jinde Cao,Jingwen Tang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (7): 2978-2992 被引量:24
标识
DOI:10.1109/tnnls.2020.3009166
摘要

Recently, the dynamics of delayed neural networks has always incurred the widespread concern of scholars. However, they are mostly confined to some simplified neural networks, which are only made up of a small amount of neurons. The main cause is that it is difficult to decompose and analyze generally high-dimensional characteristic matrices. In this article, for the first time, we can solve the computing issues of high-dimensional eigenmatrix by employing the formula of Coates flow graph, and the dynamics is considered for a bidirectional neural network with super-ring structure and multiple delays. Under certain circumstances, the characteristic equation of the linearized network can be transformed into the equation with integration element. By analyzing the equation, we find that the self-feedback coefficient and the delays have significant effects on the stability and Hopf bifurcation of the network. Then, we achieve some sufficient conditions of the stability and Hopf bifurcation on the network. Furthermore, the obtained conclusions are applied to design a standardized high-dimensional network with bidirectional ring structure, and the scale of the standardized high-dimensional network can be easily extended or reduced. Afterward, we propose some designing schemes to expand and reduce the dimension of the standardized high-dimensional network. Finally, the results of theories are coincident with that of experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssss发布了新的文献求助10
1秒前
lifezqh发布了新的文献求助10
2秒前
恋雅颖月应助艺术家脾气采纳,获得10
3秒前
1351567822应助星期八采纳,获得80
4秒前
4秒前
4秒前
5秒前
黑色土豆发布了新的文献求助10
5秒前
慕青应助帅气的璎采纳,获得10
6秒前
桐月十六发布了新的文献求助10
7秒前
学必困完成签到 ,获得积分10
7秒前
9秒前
齐佑龙发布了新的文献求助30
9秒前
9秒前
9秒前
9秒前
feedyoursoul完成签到,获得积分10
10秒前
优秀的莹完成签到,获得积分10
11秒前
Kang完成签到,获得积分10
11秒前
greenlu完成签到,获得积分10
13秒前
14秒前
Akim应助feedyoursoul采纳,获得10
15秒前
英俊白莲发布了新的文献求助10
15秒前
清脆水卉完成签到,获得积分10
16秒前
齐佑龙完成签到,获得积分10
16秒前
18秒前
19秒前
zxx完成签到 ,获得积分10
19秒前
moon完成签到,获得积分10
19秒前
KinoFreeze完成签到 ,获得积分10
19秒前
yydragen应助yyy采纳,获得40
20秒前
我是老大应助yyy采纳,获得20
20秒前
烟花应助yyy采纳,获得20
20秒前
情怀应助yyy采纳,获得20
20秒前
孙燕应助英俊白莲采纳,获得80
20秒前
上官若男应助yyy采纳,获得30
20秒前
桐桐应助yyy采纳,获得20
20秒前
vin应助yyy采纳,获得20
20秒前
vin应助yyy采纳,获得20
20秒前
孙燕应助yyy采纳,获得20
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176