Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty

运筹学 调度(生产过程) 启发式
作者
Valentina Cacchiani,Jianguo Qi,Lixing Yang
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:136: 1-29 被引量:25
标识
DOI:10.1016/j.trb.2020.03.009
摘要

Abstract In this work, we consider the problem of scheduling a set of trains (i.e., determining their departure and arrival times at the visited stations) and simultaneously deciding their stopping patterns (i.e., determining at which stations the trains should stop) with constraints on passenger demand, given as the number of passengers that travel between an origin station and a destination station. In particular, we face the setting in which demand can be uncertain, and propose Mixed Integer Linear Programming (MILP) models to derive robust solutions in planning, i.e., several months before operations. These models are based on the technique of Light Robustness, in which uncertainty is handled by inserting a desired protection level, and solution efficiency is guaranteed by limiting the worsening of the nominal objective value (i.e., the objective value of the problem in which uncertainty is neglected). In our case, the protection is against a potential increased passenger demand, and the solution efficiency is obtained by limiting the train travel time and the number of train stops. The goal is to determine robust solutions in planning so as to reduce the passenger inconvenience that may occur in real-time due to additional passenger demand. The proposed models differ in the way of inserting the protection, and show different levels of detail on the required information about passenger demand. They are tested on real-life data of the Wuhan–Guangzhou high-speed railway line under different demand scenarios, and the obtained results are compared with those found by solving the nominal problem. The comparison shows that robust solutions can handle uncertain passenger demand in a considerably more effective way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助147采纳,获得10
1秒前
1秒前
1秒前
科研通AI2S应助WTS采纳,获得10
3秒前
4秒前
Satoru发布了新的文献求助10
4秒前
maox1aoxin应助小心翼翼采纳,获得30
5秒前
拨云见日发布了新的文献求助10
5秒前
耍酷芙蓉发布了新的文献求助10
5秒前
李子完成签到 ,获得积分10
5秒前
SciGPT应助Wangyr采纳,获得10
7秒前
执着大雁完成签到,获得积分10
8秒前
爆炸头Y完成签到 ,获得积分10
9秒前
10秒前
我是老大应助栗悟饭采纳,获得10
12秒前
Orange应助安静严青采纳,获得10
12秒前
石一给石一的求助进行了留言
13秒前
修仙梅完成签到,获得积分10
13秒前
13秒前
猫和老鼠完成签到,获得积分10
14秒前
虚幻幻然完成签到 ,获得积分10
14秒前
14秒前
芦泸完成签到,获得积分10
15秒前
秘密发布了新的文献求助20
15秒前
酷波er应助虫不知采纳,获得10
15秒前
16秒前
16秒前
cdy完成签到 ,获得积分10
17秒前
Hezam发布了新的文献求助10
17秒前
纯真的老黑完成签到,获得积分10
17秒前
18秒前
18秒前
cnkly发布了新的文献求助20
19秒前
血茗发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
饭团0814发布了新的文献求助10
20秒前
王小明完成签到 ,获得积分20
20秒前
kelakola完成签到,获得积分10
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232799
求助须知:如何正确求助?哪些是违规求助? 2879532
关于积分的说明 8211575
捐赠科研通 2547023
什么是DOI,文献DOI怎么找? 1376483
科研通“疑难数据库(出版商)”最低求助积分说明 647624
邀请新用户注册赠送积分活动 623009