亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Video-based person re-identification by intra-frame and inter-frame graph neural network

计算机科学 人工智能 图形 计算机视觉 帧(网络) 卷积神经网络 模式识别(心理学) 理论计算机科学 电信
作者
Guiqing Liu,Jinzhao Wu
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:106: 104068-104068 被引量:9
标识
DOI:10.1016/j.imavis.2020.104068
摘要

In the past few years, video-based person re-identification (Re-ID) have attracted growing research attention. The crucial problem for this task is how to learn robust video feature representation, which can weaken the influence of factors such as occlusion, illumination, and background etc. A great deal of previous works utilize spatio-temporal information to represent pedestrian video, but the correlations between parts of human body are ignored. In order to take advantage of the relationship among different parts, we propose a novel Intra-frame and Inter-frame Graph Neural Network (I2GNN) to solve the video-based person Re-ID task. Specifically, (1) the features from each part are treated as graph nodes from each frame; (2) the intra-frame edges are established by the correlation between different parts; (3) the inter-frame edges are constructed between the same parts across adjacent frames. I2GNN learns video representations by employing the adjacent matrix of the graph and input features to conduct graph convolution, and then adopts projection metric learning on Grassman manifold to measure the similarities between learned pedestrian features. Moreover, this paper proposes a novel occlusion-invariant term to make the part features close to their center, which can relive several uncontrolled complicated factors, such as occlusion and pose invariance. Besides, we have carried out extensive experiments on four widely used datasets: MARS, DukeMTMC-VideoReID, PRID2011, and iLIDS-VID. The experimental results demonstrate that our proposed I2GNN model is more competitive than other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bfs完成签到 ,获得积分10
1秒前
1秒前
罗大壮发布了新的文献求助10
4秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
11秒前
mark163完成签到,获得积分10
11秒前
斯文败类应助科研通管家采纳,获得10
12秒前
12秒前
HANZHANG应助科研通管家采纳,获得10
12秒前
21完成签到 ,获得积分10
35秒前
Jasper应助找不完采纳,获得10
44秒前
50秒前
50秒前
Criminology34应助ling30采纳,获得10
54秒前
59秒前
Freeasy完成签到 ,获得积分10
1分钟前
SciGPT应助krajicek采纳,获得10
1分钟前
x夏天完成签到 ,获得积分10
1分钟前
zoey完成签到,获得积分10
1分钟前
1分钟前
sofardli完成签到,获得积分10
1分钟前
sofardli发布了新的文献求助20
1分钟前
1分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755340
求助须知:如何正确求助?哪些是违规求助? 5493931
关于积分的说明 15381135
捐赠科研通 4893488
什么是DOI,文献DOI怎么找? 2632142
邀请新用户注册赠送积分活动 1579983
关于科研通互助平台的介绍 1535786