Video-based person re-identification by intra-frame and inter-frame graph neural network

计算机科学 人工智能 图形 计算机视觉 帧(网络) 卷积神经网络 模式识别(心理学) 理论计算机科学 电信
作者
Guiqing Liu,Jinzhao Wu
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:106: 104068-104068 被引量:9
标识
DOI:10.1016/j.imavis.2020.104068
摘要

In the past few years, video-based person re-identification (Re-ID) have attracted growing research attention. The crucial problem for this task is how to learn robust video feature representation, which can weaken the influence of factors such as occlusion, illumination, and background etc. A great deal of previous works utilize spatio-temporal information to represent pedestrian video, but the correlations between parts of human body are ignored. In order to take advantage of the relationship among different parts, we propose a novel Intra-frame and Inter-frame Graph Neural Network (I2GNN) to solve the video-based person Re-ID task. Specifically, (1) the features from each part are treated as graph nodes from each frame; (2) the intra-frame edges are established by the correlation between different parts; (3) the inter-frame edges are constructed between the same parts across adjacent frames. I2GNN learns video representations by employing the adjacent matrix of the graph and input features to conduct graph convolution, and then adopts projection metric learning on Grassman manifold to measure the similarities between learned pedestrian features. Moreover, this paper proposes a novel occlusion-invariant term to make the part features close to their center, which can relive several uncontrolled complicated factors, such as occlusion and pose invariance. Besides, we have carried out extensive experiments on four widely used datasets: MARS, DukeMTMC-VideoReID, PRID2011, and iLIDS-VID. The experimental results demonstrate that our proposed I2GNN model is more competitive than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助jijahui采纳,获得80
1秒前
Jenny应助背后的诺言采纳,获得10
1秒前
木木完成签到,获得积分10
1秒前
赤邪发布了新的文献求助10
1秒前
1秒前
keen完成签到 ,获得积分10
1秒前
et完成签到,获得积分10
2秒前
桂魄完成签到,获得积分10
2秒前
2秒前
3秒前
wang发布了新的文献求助200
4秒前
4秒前
4秒前
英姑应助snowdrift采纳,获得10
4秒前
4秒前
4秒前
jy完成签到 ,获得积分10
4秒前
NexusExplorer应助立马毕业采纳,获得10
5秒前
在水一方应助123采纳,获得10
6秒前
科目三应助白华苍松采纳,获得10
7秒前
通~发布了新的文献求助10
7秒前
CipherSage应助千幻采纳,获得10
7秒前
7秒前
dddddd完成签到,获得积分10
7秒前
桂魄发布了新的文献求助10
7秒前
年轻的咖啡豆完成签到,获得积分20
8秒前
8秒前
绿洲发布了新的文献求助10
8秒前
8秒前
9秒前
aDou完成签到 ,获得积分10
9秒前
脑洞疼应助bc采纳,获得10
9秒前
NEMO发布了新的文献求助10
9秒前
李健应助mammoth采纳,获得20
9秒前
熊boy发布了新的文献求助10
9秒前
天真思雁发布了新的文献求助10
9秒前
10秒前
情怀应助蔡蔡不菜菜采纳,获得10
10秒前
shouyu29应助MADKAI采纳,获得10
11秒前
CipherSage应助MADKAI采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762