Video-based person re-identification by intra-frame and inter-frame graph neural network

计算机科学 人工智能 图形 计算机视觉 帧(网络) 卷积神经网络 模式识别(心理学) 理论计算机科学 电信
作者
Guiqing Liu,Jinzhao Wu
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:106: 104068-104068 被引量:9
标识
DOI:10.1016/j.imavis.2020.104068
摘要

In the past few years, video-based person re-identification (Re-ID) have attracted growing research attention. The crucial problem for this task is how to learn robust video feature representation, which can weaken the influence of factors such as occlusion, illumination, and background etc. A great deal of previous works utilize spatio-temporal information to represent pedestrian video, but the correlations between parts of human body are ignored. In order to take advantage of the relationship among different parts, we propose a novel Intra-frame and Inter-frame Graph Neural Network (I2GNN) to solve the video-based person Re-ID task. Specifically, (1) the features from each part are treated as graph nodes from each frame; (2) the intra-frame edges are established by the correlation between different parts; (3) the inter-frame edges are constructed between the same parts across adjacent frames. I2GNN learns video representations by employing the adjacent matrix of the graph and input features to conduct graph convolution, and then adopts projection metric learning on Grassman manifold to measure the similarities between learned pedestrian features. Moreover, this paper proposes a novel occlusion-invariant term to make the part features close to their center, which can relive several uncontrolled complicated factors, such as occlusion and pose invariance. Besides, we have carried out extensive experiments on four widely used datasets: MARS, DukeMTMC-VideoReID, PRID2011, and iLIDS-VID. The experimental results demonstrate that our proposed I2GNN model is more competitive than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小吒儿发布了新的文献求助10
刚刚
充电宝应助lty采纳,获得10
刚刚
刚刚
小小元风完成签到,获得积分10
刚刚
爆米花应助西门子云采纳,获得10
1秒前
毛毛发布了新的文献求助10
1秒前
2秒前
虚幻哦哦完成签到,获得积分10
2秒前
聪明的书包完成签到 ,获得积分10
3秒前
好滴捏发布了新的文献求助10
3秒前
张浩发布了新的文献求助10
3秒前
3秒前
中和皇极应助Lzt采纳,获得30
4秒前
单向度的人完成签到,获得积分10
5秒前
无心的静枫完成签到,获得积分10
5秒前
刻苦黎云完成签到,获得积分10
5秒前
大模型应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
7秒前
dongjy应助科研通管家采纳,获得200
7秒前
李健应助科研通管家采纳,获得10
7秒前
q1356478314应助科研通管家采纳,获得10
7秒前
小吴同志发布了新的文献求助10
7秒前
打打应助高骏伟采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
q1356478314应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
Hello应助科研通管家采纳,获得10
8秒前
8秒前
青山完成签到 ,获得积分10
8秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662