Video-based person re-identification by intra-frame and inter-frame graph neural network

计算机科学 人工智能 图形 计算机视觉 帧(网络) 卷积神经网络 模式识别(心理学) 理论计算机科学 电信
作者
Guiqing Liu,Jinzhao Wu
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:106: 104068-104068 被引量:9
标识
DOI:10.1016/j.imavis.2020.104068
摘要

In the past few years, video-based person re-identification (Re-ID) have attracted growing research attention. The crucial problem for this task is how to learn robust video feature representation, which can weaken the influence of factors such as occlusion, illumination, and background etc. A great deal of previous works utilize spatio-temporal information to represent pedestrian video, but the correlations between parts of human body are ignored. In order to take advantage of the relationship among different parts, we propose a novel Intra-frame and Inter-frame Graph Neural Network (I2GNN) to solve the video-based person Re-ID task. Specifically, (1) the features from each part are treated as graph nodes from each frame; (2) the intra-frame edges are established by the correlation between different parts; (3) the inter-frame edges are constructed between the same parts across adjacent frames. I2GNN learns video representations by employing the adjacent matrix of the graph and input features to conduct graph convolution, and then adopts projection metric learning on Grassman manifold to measure the similarities between learned pedestrian features. Moreover, this paper proposes a novel occlusion-invariant term to make the part features close to their center, which can relive several uncontrolled complicated factors, such as occlusion and pose invariance. Besides, we have carried out extensive experiments on four widely used datasets: MARS, DukeMTMC-VideoReID, PRID2011, and iLIDS-VID. The experimental results demonstrate that our proposed I2GNN model is more competitive than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
开心完成签到 ,获得积分10
4秒前
5秒前
6秒前
楚寅完成签到 ,获得积分10
16秒前
17秒前
17秒前
tooy完成签到 ,获得积分10
19秒前
儒雅八宝粥完成签到 ,获得积分10
20秒前
20秒前
SciGPT应助Nana采纳,获得10
22秒前
风中少年发布了新的文献求助10
23秒前
23秒前
啊哈哈哈哈完成签到,获得积分10
23秒前
LiaoPiggg发布了新的文献求助10
23秒前
24秒前
24秒前
求助完成签到 ,获得积分10
25秒前
淡淡冬瓜完成签到,获得积分10
27秒前
要减肥明雪完成签到,获得积分10
27秒前
28秒前
迷宫废墟发布了新的文献求助10
29秒前
29秒前
千山暮雪发布了新的文献求助10
30秒前
TT完成签到 ,获得积分10
30秒前
Lucas应助Nana采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
汉堡包应助科研通管家采纳,获得10
33秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
大模型应助科研通管家采纳,获得10
33秒前
33秒前
zkf应助科研通管家采纳,获得10
33秒前
34秒前
在水一方应助卡司采纳,获得10
34秒前
Lumos发布了新的文献求助10
35秒前
36秒前
36秒前
Getlogger发布了新的文献求助10
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578