Computation Offloading for Distributed Mobile Edge Computing Network: A Multiobjective Approach

计算机科学 计算卸载 移动边缘计算 分布式计算 可扩展性 云计算 服务器 云朵 边缘计算 服务质量 移动云计算 能源消耗 计算机网络 最优化问题 移动计算 算法 操作系统 生物 数据库 生态学
作者
Farhan Sufyan,Amit Banerjee
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 149915-149930 被引量:41
标识
DOI:10.1109/access.2020.3016046
摘要

Mobile edge computing (MEC) is emerging as a cornerstone technology to address the conflict between resource-constrained smart devices (SDs) and the ever-increasing computational demands of the mobile applications.MEC enables the SDs to offload computational-intensive tasks to the nearby edge nodes for providing better quality-of-services (QoS).The recently proposed offloading strategies, mainly consider a centralized approach for a limited number of SDs.However, with the growing popularity of the SDs, these offloading models may have the scalability issue and can be susceptible to single point failure.Although there are few distributed offloading models in the literature, they ignore the vast computational resources of the cloud, load sharing between the MEC servers, and other optimization parameters.Toward this end, we propose an efficient computation offloading scheme for a distributed load sharing MEC network in cooperation with cloud computing to enhance the capabilities of the SDs.We formulate a nonlinear multiobjective optimization problem by applying queuing theory to model the execution delay, energy consumption, and payment cost for using edge and cloud services.To solve the formulated problem, we propose a stochastic gradient descent (SGD) algorithm based solution approach to jointly optimize the offloading probability and transmission power of the SDs for finding an optimal trade-off between energy consumption, execution delay, and cost of the SDs.Finally, we perform extensive simulations to demonstrate the effectiveness of the proposed offloading scheme.Moreover, compared to the other solutions, the proposed scheme is scalable and outperforms the existing schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanny发布了新的文献求助30
刚刚
刚刚
1秒前
奋斗小蜜蜂完成签到,获得积分10
1秒前
2秒前
hqy完成签到,获得积分20
3秒前
领导范儿应助charm12采纳,获得10
3秒前
感动又晴完成签到,获得积分10
3秒前
4秒前
苦难诗社发布了新的文献求助10
4秒前
4秒前
yatou5651发布了新的文献求助10
5秒前
5秒前
许子健发布了新的文献求助10
6秒前
nini发布了新的文献求助10
6秒前
6秒前
开朗的山彤应助张阿童木采纳,获得10
6秒前
追寻依风发布了新的文献求助10
6秒前
隐形曼青应助雾昂采纳,获得10
6秒前
7秒前
betsy发布了新的文献求助10
8秒前
wuhuhu关注了科研通微信公众号
8秒前
eAN完成签到,获得积分10
8秒前
zl完成签到,获得积分10
8秒前
桐桐应助yyyhhh采纳,获得10
8秒前
9秒前
亓大大发布了新的文献求助10
9秒前
香蕉觅云应助反方向的钟采纳,获得30
9秒前
hqy发布了新的文献求助20
9秒前
852应助Gotyababy采纳,获得10
9秒前
seven发布了新的文献求助10
10秒前
PAN完成签到,获得积分10
10秒前
11秒前
香蕉觅云应助Han采纳,获得10
11秒前
太阳发布了新的文献求助10
11秒前
Mia完成签到,获得积分10
11秒前
飞飞发布了新的文献求助10
11秒前
Yu发布了新的文献求助10
11秒前
zyq发布了新的文献求助10
12秒前
黄丁文完成签到,获得积分20
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646