Reconstituting the transcriptome and DNA methylome landscapes of human implantation

外胚层 生物 DNA甲基化 转录组 表观遗传学 内细胞团 内胚层 胚胎 遗传学 基因 胚胎干细胞 胚泡 计算生物学 胚胎发生 基因表达 原肠化
作者
Fan Zhou,Rui Wang,Peng Yuan,Yixin Ren,Yunuo Mao,Rong Li,Ying Lian,Junsheng Li,Lu Wen,Liying Yan,Jie Qiao,Fuchou Tang
出处
期刊:Nature [Nature Portfolio]
卷期号:572 (7771): 660-664 被引量:266
标识
DOI:10.1038/s41586-019-1500-0
摘要

Implantation is a milestone event during mammalian embryogenesis. Implantation failure is a considerable cause of early pregnancy loss in humans1. Owing to the difficulty of obtaining human embryos early after implantation in vivo, it remains unclear how the gene regulatory network and epigenetic mechanisms control the implantation process. Here, by combining an in vitro culture system for the development human embryos after implantation and single-cell multi-omics sequencing technologies, more than 8,000 individual cells from 65 human peri-implantation embryos were systematically analysed. Unsupervised dimensionality reduction and clustering algorithms of the transcriptome data show stepwise implantation routes for the epiblast, primitive endoderm and trophectoderm lineages, suggesting robust preparation for the proper establishment of a mother-to-offspring connection during implantation. Female embryos showed initiation of random X chromosome inactivation based on analysis of parental allele-specific expression of X-chromosome-linked genes during implantation. Notably, using single-cell triple omics sequencing analysis, the re-methylation of the genome in cells from the primitive endoderm lineage was shown to be much slower than in cells of both epiblast and trophectoderm lineages during the implantation process, which indicates that there are distinct re-establishment features in the DNA methylome of the epiblast and primitive endoderm—even though both lineages are derived from the inner cell mass. Collectively, our work provides insights into the complex molecular mechanisms that regulate the implantation of human embryos, and helps to advance future efforts to understanding early embryonic development and reproductive medicine. Transcriptomics and DNA methylomics are used to study the implantation process of human embryos at single-cell resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助zimo采纳,获得10
1秒前
2秒前
puhu完成签到,获得积分10
2秒前
上官若男应助快乐的海亦采纳,获得10
2秒前
瓶里岑完成签到,获得积分10
2秒前
2秒前
桐桐应助静默向上采纳,获得10
2秒前
洛杉矶的奥斯卡完成签到,获得积分10
2秒前
李健的小迷弟应助简易采纳,获得80
2秒前
小心薛了你完成签到,获得积分10
3秒前
踏实的白枫完成签到,获得积分10
3秒前
ntrip完成签到,获得积分10
5秒前
雨堂完成签到 ,获得积分10
5秒前
5秒前
ding应助Jo采纳,获得10
5秒前
郝煜祺发布了新的文献求助10
5秒前
ldy发布了新的文献求助10
6秒前
陈甸甸发布了新的文献求助10
6秒前
南北完成签到,获得积分10
6秒前
狂野悟空完成签到,获得积分10
6秒前
6秒前
鲍勃完成签到,获得积分10
6秒前
小西完成签到,获得积分10
6秒前
上山石头发布了新的文献求助10
6秒前
decademe完成签到,获得积分10
7秒前
caizx发布了新的文献求助30
7秒前
王浩完成签到,获得积分10
7秒前
严不平完成签到,获得积分10
7秒前
在水一方应助不晚采纳,获得10
7秒前
王一博完成签到,获得积分10
8秒前
juile发布了新的文献求助10
8秒前
8秒前
希望天下0贩的0应助tttt采纳,获得10
8秒前
酷波er应助小于采纳,获得10
9秒前
9秒前
科研通AI5应助chen采纳,获得30
9秒前
妍yan完成签到,获得积分10
9秒前
yueyue完成签到,获得积分10
10秒前
10秒前
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746471
求助须知:如何正确求助?哪些是违规求助? 3289359
关于积分的说明 10064159
捐赠科研通 3005740
什么是DOI,文献DOI怎么找? 1650360
邀请新用户注册赠送积分活动 785858
科研通“疑难数据库(出版商)”最低求助积分说明 751296