HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction

计算机科学 股票市场 库存(枪支) 数据挖掘 图形 关系数据库 人工智能 机器学习 理论计算机科学 工程类 机械工程 生物 古生物学
作者
Raehyun Kim,Chan Ho So,Minbyul Jeong,Sang‐Hoon Lee,Jinkyu Kim,Jaewoo Kang
出处
期刊:Cornell University - arXiv 被引量:80
标识
DOI:10.48550/arxiv.1908.07999
摘要

Many researchers both in academia and industry have long been interested in the stock market. Numerous approaches were developed to accurately predict future trends in stock prices. Recently, there has been a growing interest in utilizing graph-structured data in computer science research communities. Methods that use relational data for stock market prediction have been recently proposed, but they are still in their infancy. First, the quality of collected information from different types of relations can vary considerably. No existing work has focused on the effect of using different types of relations on stock market prediction or finding an effective way to selectively aggregate information on different relation types. Furthermore, existing works have focused on only individual stock prediction which is similar to the node classification task. To address this, we propose a hierarchical attention network for stock prediction (HATS) which uses relational data for stock market prediction. Our HATS method selectively aggregates information on different relation types and adds the information to the representations of each company. Specifically, node representations are initialized with features extracted from a feature extraction module. HATS is used as a relational modeling module with initialized node representations. Then, node representations with the added information are fed into a task-specific layer. Our method is used for predicting not only individual stock prices but also market index movements, which is similar to the graph classification task. The experimental results show that performance can change depending on the relational data used. HATS which can automatically select information outperformed all the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
5秒前
5秒前
5秒前
5秒前
6秒前
ygx完成签到,获得积分10
7秒前
halogen发布了新的文献求助10
7秒前
搜集达人应助铁观音采纳,获得10
8秒前
YoursSummer发布了新的文献求助10
9秒前
wlin发布了新的文献求助10
9秒前
10秒前
李健应助坦率的海豚采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
凶狠的谷蓝完成签到,获得积分10
12秒前
13秒前
小橘子发布了新的文献求助10
13秒前
13秒前
14秒前
翻斗花园爆破手小胡完成签到,获得积分10
17秒前
18秒前
19秒前
搜集达人应助Chenyan775199采纳,获得10
19秒前
20秒前
20秒前
20秒前
21秒前
li发布了新的文献求助10
22秒前
勤恳的小小完成签到,获得积分10
23秒前
23秒前
铁观音发布了新的文献求助10
24秒前
24秒前
24秒前
25秒前
我在发布了新的文献求助10
25秒前
26秒前
li发布了新的文献求助10
26秒前
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182