HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction

计算机科学 股票市场 库存(枪支) 数据挖掘 图形 关系数据库 人工智能 机器学习 理论计算机科学 工程类 机械工程 生物 古生物学
作者
Raehyun Kim,Chan Ho So,Minbyul Jeong,Sang‐Hoon Lee,Jinkyu Kim,Jaewoo Kang
出处
期刊:Cornell University - arXiv 被引量:80
标识
DOI:10.48550/arxiv.1908.07999
摘要

Many researchers both in academia and industry have long been interested in the stock market. Numerous approaches were developed to accurately predict future trends in stock prices. Recently, there has been a growing interest in utilizing graph-structured data in computer science research communities. Methods that use relational data for stock market prediction have been recently proposed, but they are still in their infancy. First, the quality of collected information from different types of relations can vary considerably. No existing work has focused on the effect of using different types of relations on stock market prediction or finding an effective way to selectively aggregate information on different relation types. Furthermore, existing works have focused on only individual stock prediction which is similar to the node classification task. To address this, we propose a hierarchical attention network for stock prediction (HATS) which uses relational data for stock market prediction. Our HATS method selectively aggregates information on different relation types and adds the information to the representations of each company. Specifically, node representations are initialized with features extracted from a feature extraction module. HATS is used as a relational modeling module with initialized node representations. Then, node representations with the added information are fed into a task-specific layer. Our method is used for predicting not only individual stock prices but also market index movements, which is similar to the graph classification task. The experimental results show that performance can change depending on the relational data used. HATS which can automatically select information outperformed all the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
地精术士完成签到,获得积分10
刚刚
YOLO完成签到,获得积分10
1秒前
1秒前
JayWu完成签到,获得积分10
2秒前
Wang发布了新的文献求助10
2秒前
2秒前
宵夜发布了新的文献求助10
2秒前
小树苗完成签到,获得积分10
2秒前
黙宇循光完成签到 ,获得积分10
3秒前
SciGPT应助高高诗柳采纳,获得10
3秒前
3秒前
3秒前
4秒前
包容的琦完成签到,获得积分10
4秒前
5秒前
splemeth完成签到,获得积分10
5秒前
WYJ发布了新的文献求助10
5秒前
5秒前
扎心应助樱花草采纳,获得10
5秒前
5秒前
华仔应助强健的电源采纳,获得10
6秒前
CAST1347完成签到,获得积分10
6秒前
酷酷妙梦发布了新的文献求助10
6秒前
6秒前
moon发布了新的文献求助20
7秒前
乔呀完成签到,获得积分10
7秒前
8秒前
21完成签到,获得积分10
8秒前
包容的琦发布了新的文献求助10
8秒前
无辜的冬寒完成签到,获得积分10
8秒前
9秒前
H-China发布了新的文献求助10
9秒前
9秒前
科研小哥发布了新的文献求助10
9秒前
田様应助djm采纳,获得20
10秒前
千年主治完成签到 ,获得积分10
10秒前
10秒前
KevinSun完成签到,获得积分10
11秒前
晓天完成签到,获得积分10
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143174
求助须知:如何正确求助?哪些是违规求助? 2794297
关于积分的说明 7810446
捐赠科研通 2450505
什么是DOI,文献DOI怎么找? 1303862
科研通“疑难数据库(出版商)”最低求助积分说明 627081
版权声明 601384