HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction

计算机科学 股票市场 库存(枪支) 数据挖掘 图形 关系数据库 人工智能 机器学习 理论计算机科学 工程类 机械工程 生物 古生物学
作者
Raehyun Kim,Chan Ho So,Minbyul Jeong,Sang‐Hoon Lee,Jinkyu Kim,Jaewoo Kang
出处
期刊:Cornell University - arXiv 被引量:80
标识
DOI:10.48550/arxiv.1908.07999
摘要

Many researchers both in academia and industry have long been interested in the stock market. Numerous approaches were developed to accurately predict future trends in stock prices. Recently, there has been a growing interest in utilizing graph-structured data in computer science research communities. Methods that use relational data for stock market prediction have been recently proposed, but they are still in their infancy. First, the quality of collected information from different types of relations can vary considerably. No existing work has focused on the effect of using different types of relations on stock market prediction or finding an effective way to selectively aggregate information on different relation types. Furthermore, existing works have focused on only individual stock prediction which is similar to the node classification task. To address this, we propose a hierarchical attention network for stock prediction (HATS) which uses relational data for stock market prediction. Our HATS method selectively aggregates information on different relation types and adds the information to the representations of each company. Specifically, node representations are initialized with features extracted from a feature extraction module. HATS is used as a relational modeling module with initialized node representations. Then, node representations with the added information are fed into a task-specific layer. Our method is used for predicting not only individual stock prices but also market index movements, which is similar to the graph classification task. The experimental results show that performance can change depending on the relational data used. HATS which can automatically select information outperformed all the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
华仔应助xiaoziyi666采纳,获得10
1秒前
渝州人完成签到,获得积分10
1秒前
1秒前
hanna发布了新的文献求助10
1秒前
科研通AI2S应助neil采纳,获得10
2秒前
大模型应助天真思雁采纳,获得10
2秒前
酷炫过客发布了新的文献求助10
2秒前
2秒前
深情凡灵发布了新的文献求助10
3秒前
马保国123发布了新的文献求助10
3秒前
胡须完成签到,获得积分10
4秒前
jjgod发布了新的文献求助10
4秒前
muomuo发布了新的文献求助10
5秒前
湘华完成签到,获得积分10
5秒前
渝州人发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
开放鸵鸟发布了新的文献求助10
7秒前
7秒前
温暖以蓝完成签到,获得积分20
7秒前
WTF完成签到,获得积分10
8秒前
花花花花完成签到,获得积分10
8秒前
franklvlei发布了新的文献求助10
9秒前
丘比特应助湘华采纳,获得10
10秒前
10秒前
AIA7完成签到,获得积分10
10秒前
towerman完成签到,获得积分10
11秒前
花花花花发布了新的文献求助10
12秒前
12秒前
xiaoziyi666发布了新的文献求助10
12秒前
muomuo完成签到,获得积分10
12秒前
12秒前
eli完成签到,获得积分10
13秒前
ZL发布了新的文献求助10
13秒前
Jason完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762