已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Distortion correction of single-shot EPI enabled by deep-learning

失真(音乐) 人工智能 单发 计算机科学 回波平面成像 计算机视觉 人工神经网络 模式识别(心理学) 深度学习 卷积神经网络 一般化 数学 物理 磁共振成像 光学 计算机网络 带宽(计算) 放大器 数学分析 放射科 医学
作者
Zhangxuan Hu,Yishi Wang,Zhe Zhang,Jieying Zhang,Huimao Zhang,Chunjie Guo,Yuejiao Sun,Hua Guo
出处
期刊:NeuroImage [Elsevier]
卷期号:221: 117170-117170 被引量:30
标识
DOI:10.1016/j.neuroimage.2020.117170
摘要

A distortion correction method for single-shot EPI was proposed. Point-spread-function encoded EPI (PSF-EPI) images were used as the references to correct traditional EPI images based on deep neural network. The PSF-EPI method can obtain distortion-free echo planar images. In this study, a 2D U-net based network was trained to achieve the distortion correction of single-shot EPI (SS-EPI) images, using PSF-EPI images as targets in the training stage. Anatomical T2W-TSE images were also fed into the network to improve the quality of the results. The applications in diffusion-weighted images were used as examples in this work. The network was trained on data acquired on healthy volunteers and tested on data of both healthy volunteers and patients. The corrected EPI images from the proposed method were also compared with those from field-mapping and top-up based distortion correction methods. Experimental results showed that the proposed method can correct for EPI distortions better than both the field-mapping and top-up based methods, and the results were close to the distortion-free images from PSF-EPI. Additionally, inclusion of T2W-TSE images helped improve distortion correction of the SS-EPI images without contaminating the output noticeably. The experiments with patients and different MRI platforms demonstrated the generalization feasibility of the proposed method preliminarily. Through the correction of diffusion-weighted images, the proposed deep-learning based method was demonstrated to have the feasibility to correct for the distortion of EPI images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助罗罗采纳,获得10
1秒前
高兴电脑应助jwj采纳,获得20
2秒前
3秒前
4秒前
cai完成签到,获得积分10
6秒前
8R60d8应助徐小赞采纳,获得20
7秒前
美丽秋柔发布了新的文献求助10
8秒前
10秒前
liusen完成签到,获得积分10
11秒前
lzb完成签到,获得积分10
11秒前
花蝴蝶完成签到 ,获得积分10
12秒前
美丽秋柔完成签到,获得积分10
14秒前
明亮无颜发布了新的文献求助10
16秒前
龚仕杰完成签到 ,获得积分10
18秒前
18秒前
19秒前
昨夜書完成签到 ,获得积分10
21秒前
yangjinru完成签到 ,获得积分10
24秒前
盲盒完成签到,获得积分10
26秒前
传奇3应助chenx02采纳,获得10
28秒前
28秒前
自信眼睛完成签到 ,获得积分10
33秒前
summer发布了新的文献求助10
33秒前
35秒前
迷人幻波发布了新的文献求助10
39秒前
summer完成签到,获得积分20
41秒前
小马甲应助sjdenghao采纳,获得10
41秒前
yue完成签到 ,获得积分10
44秒前
45秒前
深情安青应助wty采纳,获得10
47秒前
123应助吴昊东采纳,获得50
47秒前
Jasper应助euy采纳,获得10
48秒前
赘婿应助suci采纳,获得10
48秒前
123应助sky采纳,获得20
48秒前
徐瑶瑶发布了新的文献求助10
50秒前
武似星飞发布了新的文献求助10
50秒前
54秒前
医路成功发布了新的文献求助10
55秒前
科目三应助维夏十一采纳,获得10
56秒前
武似星飞完成签到,获得积分10
57秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307151
求助须知:如何正确求助?哪些是违规求助? 2940937
关于积分的说明 8499575
捐赠科研通 2615129
什么是DOI,文献DOI怎么找? 1428685
科研通“疑难数据库(出版商)”最低求助积分说明 663493
邀请新用户注册赠送积分活动 648355