Distortion correction of single-shot EPI enabled by deep-learning

失真(音乐) 人工智能 单发 计算机科学 回波平面成像 计算机视觉 人工神经网络 模式识别(心理学) 深度学习 卷积神经网络 一般化 数学 物理 磁共振成像 光学 医学 计算机网络 放大器 数学分析 带宽(计算) 放射科
作者
Zhangxuan Hu,Yishi Wang,Zhe Zhang,Jieying Zhang,Huimao Zhang,Chunjie Guo,Yuejiao Sun,Hua Guo
出处
期刊:NeuroImage [Elsevier BV]
卷期号:221: 117170-117170 被引量:30
标识
DOI:10.1016/j.neuroimage.2020.117170
摘要

A distortion correction method for single-shot EPI was proposed. Point-spread-function encoded EPI (PSF-EPI) images were used as the references to correct traditional EPI images based on deep neural network. The PSF-EPI method can obtain distortion-free echo planar images. In this study, a 2D U-net based network was trained to achieve the distortion correction of single-shot EPI (SS-EPI) images, using PSF-EPI images as targets in the training stage. Anatomical T2W-TSE images were also fed into the network to improve the quality of the results. The applications in diffusion-weighted images were used as examples in this work. The network was trained on data acquired on healthy volunteers and tested on data of both healthy volunteers and patients. The corrected EPI images from the proposed method were also compared with those from field-mapping and top-up based distortion correction methods. Experimental results showed that the proposed method can correct for EPI distortions better than both the field-mapping and top-up based methods, and the results were close to the distortion-free images from PSF-EPI. Additionally, inclusion of T2W-TSE images helped improve distortion correction of the SS-EPI images without contaminating the output noticeably. The experiments with patients and different MRI platforms demonstrated the generalization feasibility of the proposed method preliminarily. Through the correction of diffusion-weighted images, the proposed deep-learning based method was demonstrated to have the feasibility to correct for the distortion of EPI images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正直凌文完成签到,获得积分10
刚刚
1秒前
Dreamer完成签到,获得积分10
1秒前
1秒前
葡萄冰应助小凯同学采纳,获得10
2秒前
HHHHH完成签到,获得积分10
2秒前
牛太虚完成签到,获得积分10
2秒前
chenjzhuc应助kkzc采纳,获得10
2秒前
木木发布了新的文献求助10
2秒前
噫嘘玺完成签到,获得积分10
2秒前
Zilong864完成签到,获得积分10
2秒前
2秒前
追寻冰淇淋应助rioo采纳,获得10
2秒前
大个应助景莉莉采纳,获得10
3秒前
可爱的函函应助jacob258采纳,获得10
3秒前
zer0完成签到,获得积分10
3秒前
棋士应助ddd采纳,获得10
4秒前
4秒前
斯文败类应助不回首采纳,获得10
4秒前
调皮的背包完成签到,获得积分10
4秒前
上官若男应助不回首采纳,获得10
4秒前
小二郎应助不回首采纳,获得10
4秒前
基德水獭发布了新的文献求助10
5秒前
隐形曼青应助北酱采纳,获得10
5秒前
SciGPT应助努力的学采纳,获得10
5秒前
李爱国应助九卫采纳,获得10
6秒前
嗷呜嗷呜完成签到,获得积分10
6秒前
小小aa16完成签到,获得积分10
6秒前
NOBODY完成签到,获得积分10
6秒前
爆米花应助xu采纳,获得10
6秒前
7秒前
fenghuo发布了新的文献求助10
7秒前
宋不凡完成签到,获得积分10
7秒前
领导范儿应助k123456采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
1111发布了新的文献求助10
7秒前
小花完成签到 ,获得积分10
8秒前
SXW发布了新的文献求助10
8秒前
重要衬衫发布了新的文献求助10
8秒前
无私的芹应助Jeannie采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953820
求助须知:如何正确求助?哪些是违规求助? 3499685
关于积分的说明 11096658
捐赠科研通 3230222
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801514