Distortion correction of single-shot EPI enabled by deep-learning

失真(音乐) 人工智能 单发 计算机科学 回波平面成像 计算机视觉 人工神经网络 模式识别(心理学) 深度学习 卷积神经网络 一般化 数学 物理 磁共振成像 光学 计算机网络 带宽(计算) 放大器 数学分析 放射科 医学
作者
Zhangxuan Hu,Yishi Wang,Zhe Zhang,Jieying Zhang,Huimao Zhang,Chunjie Guo,Yuejiao Sun,Hua Guo
出处
期刊:NeuroImage [Elsevier]
卷期号:221: 117170-117170 被引量:30
标识
DOI:10.1016/j.neuroimage.2020.117170
摘要

A distortion correction method for single-shot EPI was proposed. Point-spread-function encoded EPI (PSF-EPI) images were used as the references to correct traditional EPI images based on deep neural network. The PSF-EPI method can obtain distortion-free echo planar images. In this study, a 2D U-net based network was trained to achieve the distortion correction of single-shot EPI (SS-EPI) images, using PSF-EPI images as targets in the training stage. Anatomical T2W-TSE images were also fed into the network to improve the quality of the results. The applications in diffusion-weighted images were used as examples in this work. The network was trained on data acquired on healthy volunteers and tested on data of both healthy volunteers and patients. The corrected EPI images from the proposed method were also compared with those from field-mapping and top-up based distortion correction methods. Experimental results showed that the proposed method can correct for EPI distortions better than both the field-mapping and top-up based methods, and the results were close to the distortion-free images from PSF-EPI. Additionally, inclusion of T2W-TSE images helped improve distortion correction of the SS-EPI images without contaminating the output noticeably. The experiments with patients and different MRI platforms demonstrated the generalization feasibility of the proposed method preliminarily. Through the correction of diffusion-weighted images, the proposed deep-learning based method was demonstrated to have the feasibility to correct for the distortion of EPI images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨忘幽完成签到,获得积分0
1秒前
兴奋的天蓉完成签到 ,获得积分10
5秒前
个性仙人掌完成签到 ,获得积分10
8秒前
CLTTT完成签到,获得积分0
10秒前
HHW完成签到 ,获得积分10
30秒前
握瑾怀瑜完成签到 ,获得积分0
33秒前
33秒前
zizideng发布了新的文献求助10
36秒前
39秒前
nki完成签到,获得积分10
40秒前
LeoBigman完成签到 ,获得积分10
41秒前
糟糕的翅膀完成签到,获得积分10
41秒前
平凡世界完成签到 ,获得积分10
43秒前
wayne完成签到 ,获得积分10
43秒前
nki发布了新的文献求助10
44秒前
小羊完成签到 ,获得积分10
53秒前
搜集达人应助nki采纳,获得10
55秒前
sevenhill完成签到 ,获得积分10
1分钟前
zizideng完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
可靠映秋完成签到,获得积分10
1分钟前
牛马完成签到,获得积分10
1分钟前
verymiao完成签到 ,获得积分10
1分钟前
华仔应助程晗采纳,获得20
1分钟前
小木没有烦恼完成签到 ,获得积分10
2分钟前
程晗完成签到,获得积分20
2分钟前
俊逸的盛男完成签到 ,获得积分10
2分钟前
2分钟前
程晗发布了新的文献求助20
2分钟前
整齐的电源完成签到 ,获得积分10
2分钟前
吴静完成签到 ,获得积分10
2分钟前
壮观的谷冬完成签到 ,获得积分0
2分钟前
2分钟前
iNk应助悠悠采纳,获得20
2分钟前
Tina泽发布了新的文献求助10
2分钟前
Tina泽完成签到,获得积分10
3分钟前
shacodow完成签到,获得积分10
3分钟前
Lillianzhu1完成签到,获得积分10
3分钟前
ll完成签到,获得积分10
3分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418533
求助须知:如何正确求助?哪些是违规求助? 4534229
关于积分的说明 14143289
捐赠科研通 4450449
什么是DOI,文献DOI怎么找? 2441258
邀请新用户注册赠送积分活动 1432973
关于科研通互助平台的介绍 1410380