Hyperspectral discrimination of tea plant varieties using machine learning, and spectral matching methods

山茶 高光谱成像 植物分类学 支持向量机 植物种类 数学 线性判别分析 人工智能 模式识别(心理学) 山茶花 统计 园艺 植物 生物 计算机科学 分类学(生物学) 分类学
作者
‪Rama Rao Nidamanuri
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier BV]
卷期号:19: 100350-100350 被引量:2
标识
DOI:10.1016/j.rsase.2020.100350
摘要

Remote sensing-based discrimination and mapping of tea (Camellia sinensis) plantations are valuable for efficient management of inventory and optimization of resources by the tea production industry. Apart from the diverse tea plant varieties, growth of natural plant species is a common scenario in tea plantations. The objective of this research is spectral discrimination of nine popular tea plant varieties in the presence of six natural plant species in Munnar, Western Ghats of India. Canopy level hyperspectral reflectance measurements acquired for tea and natural plant species were analyzed using several statistical, and machine learning methods namely, k-nearest neighbourhood classifier (k-NN), linear discriminant analysis (LDA), support vector machines (SVM), normalized spectral similarity score (NS3), maximum likelihood classifier (MLC), and artificial neural networks (ANNs). In addition, the existence and statistical significance of the spectral separability among 15 tea and natural plant species was assessed by non-parametric MANOVA. Results indicate that six out of nine tea plant varieties could be discriminated with accuracies between 75% and 80%. The presence of natural plant species has decreased the inter-species spectral variability for a few tea plant varieties. However, there has been enhanced spectral variability for a few other tea plant varieties. The presence of natural plant species does not need to be disadvantageous to the spectral discrimination of tea species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助缥缈的夜梅采纳,获得10
刚刚
刚刚
1秒前
3秒前
脑洞疼应助13采纳,获得20
3秒前
完美世界应助skyler采纳,获得10
3秒前
无花果应助小白采纳,获得10
5秒前
6秒前
orixero应助银玥采纳,获得10
7秒前
7秒前
ll完成签到,获得积分10
7秒前
高数数完成签到 ,获得积分10
7秒前
awuwuwu发布了新的文献求助10
8秒前
科研通AI6应助美好向日葵采纳,获得10
9秒前
机智平灵发布了新的文献求助10
9秒前
华山发布了新的文献求助30
9秒前
炙热的以南完成签到,获得积分10
10秒前
hbhbj发布了新的文献求助10
10秒前
帅气小霜发布了新的文献求助10
11秒前
mikejames完成签到,获得积分10
12秒前
桃桃发布了新的文献求助10
12秒前
洋芋小姐完成签到 ,获得积分20
12秒前
13秒前
14秒前
迷路文博完成签到 ,获得积分20
14秒前
慕青应助Lybb采纳,获得30
14秒前
15秒前
水1111完成签到,获得积分20
15秒前
15秒前
16秒前
16秒前
充电宝应助我就是KKKK采纳,获得10
17秒前
17秒前
滔滔不绝完成签到 ,获得积分10
18秒前
仂尤发布了新的文献求助10
19秒前
hbhbj发布了新的文献求助10
19秒前
20秒前
一只小猪包完成签到,获得积分10
20秒前
21秒前
迟宏珈发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058