Physical chemistry of the TiN/Hf0.5Zr0.5O2 interface

退火(玻璃) X射线光电子能谱 铁电性 肖特基势垒 空位缺陷 兴奋剂 电极 材料科学 化学 纳米技术 光电子学 物理化学 冶金 结晶学 化学工程 复合材料 电介质 二极管 工程类
作者
Wassim Hamouda,A. Pancotti,Christophe Lubin,Ludovic Tortech,Claudia Richter,Thomas Mikolajick,Uwe Schroeder,N. Barrett
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:127 (6) 被引量:120
标识
DOI:10.1063/1.5128502
摘要

Ferroelectric hafnia-based thin films are promising candidates for emerging high-density embedded nonvolatile memory technologies, thanks to their compatibility with silicon technology and the possibility of 3D integration. The electrode–ferroelectric interface and the crystallization annealing temperature may play an important role in such memory cells. The top interface in a TiN/Hf0.5Zr0.5O2/TiN metal–ferroelectric–metal stack annealed at different temperatures was investigated with X-ray photoelectron spectroscopy. The uniformity and continuity of the 2 nm TiN top electrode was verified by photoemission electron microscopy and conductive atomic force microscopy. Partial oxidation of the electrode at the interface is identified. Hf is reduced near the top interface due to oxygen scavenging by the top electrode. The oxygen vacancy (VO) profile showed a maximum at the top interface (0.71%) and a sharp decrease into the film, giving rise to an internal field. Annealing at higher temperatures did not affect the VO concentration at the top interface but causes the generation of additional VO in the film, leading to a decrease of the Schottky Barrier Height for electrons. The interface chemistry and n-type film doping are believed to be at the origin of several phenomena, including wake-up, imprint, and fatigue. Our results give insights into the physical chemistry of the top interface with the accumulation of defective charges acting as electronic traps, causing a local imprint effect. This may explain the wake-up behavior as well and also can be a possible reason of the weaker endurance observed in these systems when increasing the annealing temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助清爽忆山采纳,获得10
刚刚
小马甲应助日月山河永在采纳,获得10
刚刚
娃娃发布了新的文献求助10
1秒前
1秒前
任医生发布了新的文献求助10
1秒前
冷眼观潮完成签到,获得积分10
1秒前
1秒前
守约发布了新的文献求助10
2秒前
3秒前
凌小飞侠发布了新的文献求助10
3秒前
小T儿完成签到,获得积分10
3秒前
MicroCytoYL发布了新的文献求助10
3秒前
yzy发布了新的文献求助10
4秒前
从来都不会放弃zr完成签到,获得积分10
4秒前
点点发布了新的文献求助10
4秒前
科研通AI2S应助Feng采纳,获得10
4秒前
张小小完成签到,获得积分10
4秒前
hata发布了新的文献求助10
5秒前
5秒前
yangyangyang发布了新的文献求助10
5秒前
keran发布了新的文献求助10
5秒前
shin0324完成签到,获得积分10
6秒前
pencil123应助易达采纳,获得10
6秒前
守约完成签到,获得积分10
7秒前
8秒前
8秒前
愤怒的之玉完成签到 ,获得积分10
9秒前
9秒前
欧阳小枫完成签到,获得积分10
9秒前
江海下百川完成签到,获得积分10
9秒前
9秒前
JamesPei应助小宇采纳,获得10
10秒前
10秒前
阿桂完成签到,获得积分10
10秒前
10秒前
沙比完成签到,获得积分10
11秒前
一一完成签到,获得积分10
11秒前
MicroCytoYL完成签到,获得积分10
12秒前
12秒前
一只特立独行的朱完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672