Nondestructive and rapid grading of tobacco leaves by use of a hand-held near-infrared spectrometer, based on a particle swarm optimization-extreme learning machine algorithm

粒子群优化 极限学习机 算法 分光计 支持向量机 人工智能 机器学习 多群优化 线性判别分析 计算机科学 光学 物理 人工神经网络
作者
Ruidong Li,Xiaobing Zhang,Keqiang Li,Junfeng Qiao,Yong Wang,Zhang Jianqiang,Wenhua Zi
出处
期刊:Spectroscopy Letters [Taylor & Francis]
卷期号:53 (9): 685-691 被引量:8
标识
DOI:10.1080/00387010.2020.1824193
摘要

A nondestructive and rapid method has been put forward to grade tobacco leaves in the paper. The method is based on a combination of a hand-held near-infrared spectrometer and a particle swarm optimization-extreme learning machine algorithm. Firstly, the spectral data of the training samples are collected directly from the tobacco leaves nondestructively by using a hand-held near infrared spectrometer without any pretreatment. Secondly, the training models of different classes are built using particle swarm optimization-extreme learning machine algorithm. Finally, the classes of test samples can be predicted by using the developed models. Besides, the classification results of particle swarm optimization-extreme learning machine algorithm are also compared with that of the traditional linear discriminant analysis, support vector machine, and extreme learning machine algorithms, respectively. The experimental results show the classification accuracy of the particle swarm optimization-extreme learning machine algorithm is comparable after the parameter optimization. It indicates that the interplay between the hand-held near-infrared spectroscopy technology and particle swarm optimization-extreme learning machine algorithm will provide a novel classification method for grading tobacco leaves in the purchasing process on the spot.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Rondab应助科研通管家采纳,获得10
刚刚
刚刚
Ava应助001采纳,获得10
刚刚
Rondab应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Rondab应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
dong应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
米奇完成签到 ,获得积分10
1秒前
打打应助科研通管家采纳,获得10
1秒前
zhongu应助科研通管家采纳,获得10
1秒前
LPeaQ应助科研通管家采纳,获得10
1秒前
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
无私的芹应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
chen应助科研通管家采纳,获得10
2秒前
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
lsq发布了新的文献求助10
5秒前
传奇3应助我现在感觉很颓采纳,获得10
5秒前
6秒前
Orange应助虚心的垣采纳,获得30
6秒前
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794