Mapping of rice growth phases and bare land using Landsat-8 OLI with machine learning

物候学 支持向量机 遥感 计算机科学 环境科学 随机森林 水田 机器学习 农业工程 地理 生态学 生物 工程类 考古
作者
Fadhlullah Ramadhani,Reddy Pullanagari,Gábor Kereszturi,Jonathan Procter
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:41 (21): 8428-8452 被引量:25
标识
DOI:10.1080/01431161.2020.1779378
摘要

Regular monitoring and mapping of rice (Oryza Sativa) growth phases are essential for industry stakeholders to ensure food production is on track and to assess the impact of climate change on rice production. In Indonesia, high-cost field surveys have been widely used to monitor the rice growth phases. Alternatively, this research proposes a methodology to retrieve multi-temporal rice phenology (vegetative, reproductive, and ripening) and bare land mapping using medium resolution remote sensing imagery obtained from Landsat-8 Operational Land Imager (OLI) combined with machine learning techniques. In this study, we have used extensive ground validation information collected from 2014 to 2016 for training the models. This ground validation information was obtained from pre-installed webcams across Indonesia. Five different machine learning algorithms were used including random forest (RF), support vector machine (SVM) with three kernel functions (linear, polynomial, and radial) and artificial neural networks (ANN) to classify rice growth phases and bare land. This paper also evaluates the temporal evolution of rice phenology and bare land to check the prediction model consistency between two consecutive dates in 3 years. The results show that the nonlinear SVM algorithm gives the best model accuracy (70.5% with Kappa: 0.66) based on the test dataset and the lowest temporal changes (<11%). Spatial-temporal assessment of rice phenology and bare land from Landsat-8 indicated that the models were reliable and robust over different seasons and years. The distribution of rice phenology maps will enable Indonesian management authorities to supply fertilizer, allocate water resources, harvesting, and marketing facilities more efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的祥发布了新的文献求助10
2秒前
嗅犬发布了新的文献求助10
4秒前
枝枝发布了新的文献求助10
4秒前
5秒前
赫连人杰完成签到,获得积分10
6秒前
Ambition完成签到 ,获得积分10
6秒前
404NotFOUND应助张瀚文采纳,获得10
7秒前
斯文败类应助wjw采纳,获得10
7秒前
欢喜沛珊完成签到 ,获得积分10
9秒前
纪亦瑶发布了新的文献求助10
10秒前
yzhilson完成签到 ,获得积分10
12秒前
所所应助剪影改采纳,获得10
13秒前
丘比特应助honphyjiang采纳,获得10
13秒前
13秒前
彭于晏应助枝枝采纳,获得10
14秒前
橙子上岸完成签到,获得积分20
15秒前
111完成签到,获得积分10
19秒前
7777777完成签到,获得积分10
20秒前
橙子上岸发布了新的文献求助10
20秒前
纪亦瑶完成签到,获得积分10
23秒前
404NotFOUND应助张瀚文采纳,获得10
24秒前
fff完成签到,获得积分10
26秒前
Uniibooy完成签到 ,获得积分10
26秒前
一一完成签到,获得积分10
26秒前
骤雨时晴完成签到 ,获得积分10
27秒前
酷波er应助欣喜亚男采纳,获得10
27秒前
平常的白筠完成签到,获得积分10
28秒前
tutuee完成签到,获得积分10
29秒前
wenwenwang完成签到 ,获得积分10
29秒前
29秒前
岁月星辰完成签到,获得积分10
30秒前
鑫鑫完成签到 ,获得积分10
31秒前
研友_VZG7GZ应助齐正采纳,获得10
31秒前
学术蝗虫完成签到,获得积分20
33秒前
34秒前
Joyce完成签到,获得积分10
35秒前
sunshine完成签到,获得积分20
36秒前
didi完成签到,获得积分10
36秒前
37秒前
风味烤羊腿完成签到,获得积分0
37秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464003
求助须知:如何正确求助?哪些是违规求助? 3057207
关于积分的说明 9056164
捐赠科研通 2747262
什么是DOI,文献DOI怎么找? 1507293
科研通“疑难数据库(出版商)”最低求助积分说明 696479
邀请新用户注册赠送积分活动 696004