A Spatial-Temporal Interpretable Deep Learning Model for improving interpretability and predictive accuracy of satellite-based PM2.5

可解释性 深度学习 卫星 遥感 人工智能 计算机科学 机器学习 模式识别(心理学) 地理 工程类 航空航天工程
作者
Xing Yan,Zhou Zang,Yize Jiang,Wenzhong Shi,Yushan Guo,Dan Li,Chuanfeng Zhao,Husi Letu
出处
期刊:Environmental Pollution [Elsevier]
卷期号:273: 116459-116459 被引量:75
标识
DOI:10.1016/j.envpol.2021.116459
摘要

Being able to monitor PM2.5 across a range of scales is incredibly important for our ability to understand and counteract air pollution. Remote monitoring PM2.5 using satellite-based data would be incredibly advantageous to this effort, but current machine learning methods lack necessary interpretability and predictive accuracy. This study details the development of a new Spatial-Temporal Interpretable Deep Learning Model (SIDLM) to improve the interpretability and predictive accuracy of satellite-based PM2.5 measurements. In contrast to traditional deep learning models, the SIDLM is both “wide” and “deep.” We comprehensively evaluated the proposed model in China using different input data (top-of-atmosphere (TOA) measurements-based and aerosol optical depth (AOD)-based, with or without meteorological data) and different spatial resolutions (10 km, 3 km, and 250 m). TOA-based SIDLM PM2.5 achieved the best predictive accuracy in China, with root-mean-square errors (RMSE) of 15.30 and 15.96 μg/m3, and R2 values of 0.70 and 0.66 for PM2.5 predictions at 10 km and 3 km spatial resolutions, respectively. Additionally, we tested the SIDLM in PM2.5 retrievals at a 250 m spatial resolution over Beijing, China (RMSE = 16.01 μg/m3, R2 = 0.62). Furthermore, SIDLM demonstrated higher accuracy than five machine learning inversion methods, and also outperformed them regarding feature extraction and the interpretability of its inversion results. In particular, modeling results indicated the strong influence of the Tongzhou district on the principle PM2.5 in the Beijing urban area. SIDLM-extracted temporal characteristics revealed that summer months (June–August) might have contributed less to PM2.5 concentrations, indicating the limited accumulation of PM2.5 in these months. Our study shows that SIDLM could become an important tool for other earth observation data in deep learning-based predictions and spatiotemporal analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aixiaoming0503完成签到,获得积分10
2秒前
村口的帅老头完成签到 ,获得积分10
3秒前
4秒前
waubycid完成签到,获得积分10
4秒前
司徒不二完成签到,获得积分0
5秒前
tjseilcy完成签到,获得积分10
5秒前
pluto应助zhang97采纳,获得10
7秒前
小菜应助xinxin采纳,获得50
7秒前
所所应助激情的乌龟采纳,获得10
7秒前
轻松诗霜完成签到 ,获得积分10
7秒前
mss12138完成签到,获得积分0
8秒前
秋菲菲完成签到,获得积分10
9秒前
慧慧子发布了新的文献求助10
10秒前
sia完成签到 ,获得积分0
10秒前
罐罐面完成签到,获得积分10
11秒前
xrkxrk完成签到 ,获得积分10
12秒前
chglj427完成签到,获得积分10
12秒前
传奇3应助Hyunstar采纳,获得10
13秒前
典雅的迎波完成签到,获得积分10
14秒前
黑风小妖完成签到,获得积分10
15秒前
LEE123完成签到,获得积分10
15秒前
novose完成签到,获得积分10
16秒前
kyj完成签到,获得积分10
16秒前
Wanyeweiyu完成签到,获得积分10
18秒前
蔡毛线完成签到 ,获得积分10
19秒前
超级尔白发布了新的文献求助10
19秒前
ads完成签到,获得积分10
20秒前
昵称完成签到,获得积分10
22秒前
撒玉完成签到,获得积分10
22秒前
友好凌柏完成签到 ,获得积分10
22秒前
kento应助xinxin采纳,获得50
24秒前
Conner完成签到 ,获得积分10
25秒前
娜娜完成签到,获得积分10
26秒前
bocheng完成签到,获得积分10
27秒前
betterme完成签到,获得积分10
27秒前
nuonuomimi完成签到,获得积分10
29秒前
汉堡包应助BINBIN采纳,获得10
30秒前
zhang97完成签到,获得积分10
31秒前
leezhen完成签到,获得积分10
31秒前
sherry221完成签到,获得积分10
31秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413470
求助须知:如何正确求助?哪些是违规求助? 3015836
关于积分的说明 8872106
捐赠科研通 2703604
什么是DOI,文献DOI怎么找? 1482370
科研通“疑难数据库(出版商)”最低求助积分说明 685266
邀请新用户注册赠送积分活动 679994