A Spatial-Temporal Interpretable Deep Learning Model for improving interpretability and predictive accuracy of satellite-based PM2.5

可解释性 深度学习 卫星 遥感 人工智能 计算机科学 机器学习 模式识别(心理学) 地理 工程类 航空航天工程
作者
Xing Yan,Zhou Zang,Yize Jiang,Wenzhong Shi,Yushan Guo,Dan Li,Chuanfeng Zhao,Husi Letu
出处
期刊:Environmental Pollution [Elsevier]
卷期号:273: 116459-116459 被引量:75
标识
DOI:10.1016/j.envpol.2021.116459
摘要

Being able to monitor PM2.5 across a range of scales is incredibly important for our ability to understand and counteract air pollution. Remote monitoring PM2.5 using satellite-based data would be incredibly advantageous to this effort, but current machine learning methods lack necessary interpretability and predictive accuracy. This study details the development of a new Spatial-Temporal Interpretable Deep Learning Model (SIDLM) to improve the interpretability and predictive accuracy of satellite-based PM2.5 measurements. In contrast to traditional deep learning models, the SIDLM is both “wide” and “deep.” We comprehensively evaluated the proposed model in China using different input data (top-of-atmosphere (TOA) measurements-based and aerosol optical depth (AOD)-based, with or without meteorological data) and different spatial resolutions (10 km, 3 km, and 250 m). TOA-based SIDLM PM2.5 achieved the best predictive accuracy in China, with root-mean-square errors (RMSE) of 15.30 and 15.96 μg/m3, and R2 values of 0.70 and 0.66 for PM2.5 predictions at 10 km and 3 km spatial resolutions, respectively. Additionally, we tested the SIDLM in PM2.5 retrievals at a 250 m spatial resolution over Beijing, China (RMSE = 16.01 μg/m3, R2 = 0.62). Furthermore, SIDLM demonstrated higher accuracy than five machine learning inversion methods, and also outperformed them regarding feature extraction and the interpretability of its inversion results. In particular, modeling results indicated the strong influence of the Tongzhou district on the principle PM2.5 in the Beijing urban area. SIDLM-extracted temporal characteristics revealed that summer months (June–August) might have contributed less to PM2.5 concentrations, indicating the limited accumulation of PM2.5 in these months. Our study shows that SIDLM could become an important tool for other earth observation data in deep learning-based predictions and spatiotemporal analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
twang93完成签到,获得积分10
刚刚
刚刚
刚刚
偷吃文献的老鼠完成签到,获得积分20
刚刚
fyc发布了新的文献求助10
1秒前
1秒前
1秒前
Lyd发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
6秒前
shiqi完成签到,获得积分10
6秒前
米米发布了新的文献求助10
6秒前
6秒前
铛铛发布了新的文献求助30
6秒前
栗栗发布了新的文献求助50
7秒前
圆你心安完成签到,获得积分10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助30
8秒前
9秒前
木子囡月发布了新的文献求助10
9秒前
JKfeng完成签到,获得积分10
10秒前
zrw发布了新的文献求助10
10秒前
科研通AI6.1应助Marita采纳,获得10
11秒前
11秒前
苹果惠发布了新的文献求助10
11秒前
12秒前
科目三应助负责的方盒采纳,获得30
12秒前
张坤发布了新的文献求助10
12秒前
阿坝完成签到,获得积分10
12秒前
666发布了新的文献求助10
13秒前
13秒前
13秒前
满意语芙发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750468
求助须知:如何正确求助?哪些是违规求助? 5464085
关于积分的说明 15366838
捐赠科研通 4889446
什么是DOI,文献DOI怎么找? 2629235
邀请新用户注册赠送积分活动 1577526
关于科研通互助平台的介绍 1534012