Asymmetric Graph-Guided Multitask Survival Analysis With Self-Paced Learning

计算机科学 正规化(语言学) 人工智能 多任务学习 机器学习 图形 任务(项目管理) 任务分析 理论计算机科学 经济 管理
作者
Cheng Liu,Wei Cao,Si Wu,Wenjun Shen,Dazhi Jiang,Zhiwen Yu,Hau−San Wong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 654-666 被引量:4
标识
DOI:10.1109/tnnls.2020.3028453
摘要

Recently, multitask learning has been successfully applied to survival analysis problems. A critical challenge in real-world survival analysis tasks is that not all instances and tasks are equally learnable. A survival analysis model can be improved when considering the complexities of instances and tasks during the model training. To this end, we propose an asymmetric graph-guided multitask learning approach with self-paced learning for survival analysis applications. The proposed model is able to improve the learning performance by identifying the complex structure among tasks and considering the complexities of training instances and tasks during the model training. Especially, by incorporating the self-paced learning strategy and asymmetric graph-guided regularization, the proposed model is able to learn the model in a progressive way from "easy" to "hard" loss function items. In addition, together with the self-paced learning function, the asymmetric graph-guided regularization allows the related knowledge transfer from one task to another in an asymmetric way. Consequently, the knowledge acquired from those earlier learned tasks can help to solve complex tasks effectively. The experimental results on both synthetic and real-world TCGA data suggest that the proposed method is indeed useful for improving survival analysis and achieves higher prediction accuracies than the previous state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmm发布了新的文献求助10
刚刚
路见不平完成签到,获得积分10
刚刚
静静静发布了新的文献求助10
刚刚
Lisa完成签到,获得积分10
刚刚
思源应助Ljy采纳,获得30
刚刚
dhw发布了新的文献求助10
1秒前
高高的茉莉完成签到,获得积分10
2秒前
ALonFan发布了新的文献求助10
2秒前
李李发布了新的文献求助30
2秒前
3秒前
3秒前
3秒前
3秒前
王王发布了新的文献求助10
3秒前
4秒前
雨漫空巷花完成签到,获得积分10
4秒前
欢呼的念露完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
ZLN发布了新的文献求助30
7秒前
吕佳完成签到 ,获得积分10
7秒前
8秒前
jie发布了新的文献求助10
8秒前
9秒前
小二郎应助斯文问旋采纳,获得10
9秒前
深情安青应助晴栀采纳,获得10
10秒前
10秒前
就好发布了新的文献求助10
12秒前
ALonFan完成签到,获得积分10
12秒前
塞塞发布了新的文献求助10
13秒前
lyz完成签到,获得积分10
13秒前
13秒前
jie完成签到,获得积分10
14秒前
科目三应助勤劳的画笔采纳,获得10
15秒前
桃桃桃酱发布了新的文献求助20
15秒前
hxy发布了新的文献求助10
15秒前
wendy完成签到,获得积分10
16秒前
东方欲晓应助重要的如天采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296050
求助须知:如何正确求助?哪些是违规求助? 2931953
关于积分的说明 8454260
捐赠科研通 2604502
什么是DOI,文献DOI怎么找? 1421789
科研通“疑难数据库(出版商)”最低求助积分说明 661203
邀请新用户注册赠送积分活动 644102