已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Asymmetric Graph-Guided Multitask Survival Analysis With Self-Paced Learning

计算机科学 正规化(语言学) 人工智能 多任务学习 机器学习 图形 任务(项目管理) 任务分析 理论计算机科学 管理 经济
作者
Cheng Liu,Wenming Cao,Si Wu,Wen‐Jun Shen,Dazhi Jiang,Zhiwen Yu,Hau−San Wong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 654-666 被引量:8
标识
DOI:10.1109/tnnls.2020.3028453
摘要

Recently, multitask learning has been successfully applied to survival analysis problems. A critical challenge in real-world survival analysis tasks is that not all instances and tasks are equally learnable. A survival analysis model can be improved when considering the complexities of instances and tasks during the model training. To this end, we propose an asymmetric graph-guided multitask learning approach with self-paced learning for survival analysis applications. The proposed model is able to improve the learning performance by identifying the complex structure among tasks and considering the complexities of training instances and tasks during the model training. Especially, by incorporating the self-paced learning strategy and asymmetric graph-guided regularization, the proposed model is able to learn the model in a progressive way from "easy" to "hard" loss function items. In addition, together with the self-paced learning function, the asymmetric graph-guided regularization allows the related knowledge transfer from one task to another in an asymmetric way. Consequently, the knowledge acquired from those earlier learned tasks can help to solve complex tasks effectively. The experimental results on both synthetic and real-world TCGA data suggest that the proposed method is indeed useful for improving survival analysis and achieves higher prediction accuracies than the previous state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
怪怪完成签到 ,获得积分10
1秒前
专注冰棍完成签到 ,获得积分10
2秒前
感动手链完成签到,获得积分10
2秒前
2秒前
爆米花应助junchen采纳,获得10
2秒前
3秒前
4秒前
尧章完成签到,获得积分20
4秒前
yulee完成签到,获得积分10
5秒前
慢慢发布了新的文献求助30
5秒前
风清扬应助lemon采纳,获得30
5秒前
yingying完成签到 ,获得积分10
6秒前
微笑的手机完成签到 ,获得积分10
7秒前
陶醉的羞花完成签到 ,获得积分10
7秒前
太懂我了吧完成签到,获得积分10
7秒前
8秒前
kaka0934发布了新的文献求助10
9秒前
露露完成签到 ,获得积分10
9秒前
咻咻咻超级飞侠完成签到 ,获得积分10
9秒前
ccc完成签到,获得积分10
9秒前
种地小能手~完成签到 ,获得积分10
10秒前
JINCHANG完成签到,获得积分10
10秒前
尧章发布了新的文献求助10
12秒前
13秒前
YL完成签到 ,获得积分20
13秒前
13秒前
养猪的张三完成签到,获得积分10
14秒前
334niubi666完成签到 ,获得积分10
15秒前
悠悠完成签到 ,获得积分10
15秒前
和谐尔曼完成签到 ,获得积分10
15秒前
17秒前
南皖发布了新的文献求助10
17秒前
TheYNJ完成签到 ,获得积分10
17秒前
严明完成签到,获得积分0
18秒前
严明完成签到,获得积分0
18秒前
xtz发布了新的文献求助10
18秒前
似水流年完成签到 ,获得积分10
18秒前
Akim应助yinruopeng采纳,获得10
19秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705414
求助须知:如何正确求助?哪些是违规求助? 5163789
关于积分的说明 15245335
捐赠科研通 4859251
什么是DOI,文献DOI怎么找? 2607701
邀请新用户注册赠送积分活动 1558838
关于科研通互助平台的介绍 1516363