功能(生物学)
激酶
脱落酸
蛋白激酶A
细胞生物学
信号
生物
生物化学
基因
作者
Borja Belda‐Palazón,Mattia Adamo,Concetta Valerio,Liliana J. Ferreira,Ana Confraria,Diana Reis-Barata,Américo Rodrigues,Christian Meyer,Pedro L. Rodrı́guez,Elena Baena–González
出处
期刊:Nature plants
[Springer Nature]
日期:2020-10-19
卷期号:6 (11): 1345-1353
被引量:145
标识
DOI:10.1038/s41477-020-00778-w
摘要
Adverse environmental conditions trigger responses in plants that promote stress tolerance and survival at the expense of growth1. However, little is known of how stress signalling pathways interact with each other and with growth regulatory components to balance growth and stress responses. Here, we show that plant growth is largely regulated by the interplay between the evolutionarily conserved energy-sensing SNF1-related protein kinase 1 (SnRK1) protein kinase and the abscisic acid (ABA) phytohormone pathway. While SnRK2 kinases are main drivers of ABA-triggered stress responses, we uncover an unexpected growth-promoting function of these kinases in the absence of ABA as repressors of SnRK1. Sequestration of SnRK1 by SnRK2-containing complexes inhibits SnRK1 signalling, thereby allowing target of rapamycin (TOR) activity and growth under optimal conditions. On the other hand, these complexes are essential for releasing and activating SnRK1 in response to ABA, leading to the inhibition of TOR and growth under stress. This dual regulation of SnRK1 by SnRK2 kinases couples growth control with environmental factors typical for the terrestrial habitat and is likely to have been critical for the water-to-land transition of plants. The authors characterize a cross-talk between ABA and energy pathways. Essential ABA signalling components SnRK2s sequester SnRK1 in a protein complex, decreasing its interaction with the TOR kinase central for energy signalling.
科研通智能强力驱动
Strongly Powered by AbleSci AI