Early fault diagnosis of ball screws based on 1-D convolution neural network and orthogonal design

滚珠丝杠 卷积神经网络 球(数学) 计算机科学 人工神经网络 特征提取 人工智能 润滑 卷积(计算机科学) 断层(地质) 模式识别(心理学) 工程类 机械工程 数学 几何学 地质学 地震学 螺母
作者
Chen Yin,Yulin Wang,Yan He,Lu Liu,Yan Wang,Guannan Yue
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE]
卷期号:235 (5): 783-797 被引量:6
标识
DOI:10.1177/1748006x21992886
摘要

Ball screws, the most frequently used mechanical components to transform rotary motion into linear motion, can directly affect the precision and service life of engineering machines. Once the efficiency and accuracy of ball screws degrades, the performance and safety of machines are hard to guarantee. Conventional fault diagnosis researches of ball screws are mainly focused on ordinary faults such as preload loss and wear, and lack of the researches on early faults such as lubrication degradation which may progress into the ordinary faults. Additionally, the fault diagnosis models proposed in previous studies divide the fault diagnosis into two separated stages: feature extraction and fault classification, which prevents the usage for real-time applications. The specifically designed algorithm in features extraction stage may be also not workable on other objects. To tackle these drawbacks, this paper proposes a highly accurate early fault diagnosis model of ball screws based on a state-of-the-art deep learning technique, called One-Dimensional Convolutional Neural Network (1-D CNN). Experiments simulating the lubrication degradation of ball screws are specially designed for the early fault diagnosis of the ball screws. Moreover, a concise and efficient approach based on orthogonal design is exploited to scientifically obtain the optimal parameters of the 1-D CNN. The results of a case study verify the superiority of the proposed method in establishing a highly accurate 1-D CNN based fault diagnosis model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
3秒前
Waqas完成签到,获得积分10
4秒前
冰激凌发布了新的文献求助10
4秒前
FceEar发布了新的文献求助10
6秒前
7秒前
7秒前
锦鲤完成签到,获得积分10
7秒前
葡萄柚子完成签到 ,获得积分10
8秒前
8秒前
dadadarcier发布了新的文献求助10
8秒前
来了来了发布了新的文献求助10
8秒前
CC完成签到 ,获得积分10
9秒前
9秒前
完美世界应助方墨采纳,获得10
10秒前
今天也要努力呀完成签到,获得积分10
10秒前
Rita应助one111采纳,获得10
10秒前
Mm完成签到,获得积分10
10秒前
许七安发布了新的文献求助10
11秒前
琪琪要发SCI完成签到,获得积分10
12秒前
一站到底发布了新的文献求助10
12秒前
锦鲤发布了新的文献求助10
12秒前
13秒前
华仔应助bji采纳,获得10
13秒前
14秒前
欣喜芷完成签到,获得积分10
16秒前
16秒前
宁学者完成签到,获得积分10
16秒前
16秒前
JHcHuN完成签到,获得积分10
18秒前
18秒前
简单沛山完成签到 ,获得积分10
19秒前
爆米花应助dadadarcier采纳,获得10
19秒前
19秒前
研友_38KvPZ发布了新的文献求助10
20秒前
20秒前
JHcHuN发布了新的文献求助10
21秒前
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482136
求助须知:如何正确求助?哪些是违规求助? 3071971
关于积分的说明 9125149
捐赠科研通 2763750
什么是DOI,文献DOI怎么找? 1516677
邀请新用户注册赠送积分活动 701746
科研通“疑难数据库(出版商)”最低求助积分说明 700512