Health risk assessment based on source identification of heavy metals: A case study of Beiyun River, China.

危险系数 重金属 环境化学 健康风险 生态毒理学 人类健康 环境卫生 污染物 环境污染
作者
Huihui Wu,Congbin Xu,Jinhang Wang,Ying Xiang,Meng Ren,Hantong Qie,Yinjie Zhang,Ruihua Yao,Lu Li,Aijun Lin
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier]
卷期号:213: 112046- 被引量:11
标识
DOI:10.1016/j.ecoenv.2021.112046
摘要

Long-term retention and accumulation of heavy metals in rivers pose a great threat to the stability of ecosystems and human health. In this study, Beiyun River was taken as the example to quantitatively identify pollution sources and assess the pollution source-oriented health risk. A total of 8 heavy metals (Mn, Ni, Pb, Zn, As, Cr, Cd, and Cu) in Beiyun River were measured. Ordinary kriging (OK) and inverse distance weight (IDW) methods were used to predict the distribution of heavy metals. The results showed that the OK method is more accurate, and heavy metal pollution in the midstream and downstream is much more serious than that in the upstream. Principal component analysis-multiple linear regressions (PCA-MLR) and positive matrix factorization (PMF) methods were used to quantitatively identify pollution sources. The coefficient of determination (R2) of PMF is closer to 1, and the analyzed pollution source is more refined. Furthermore, the result of source identification was imported into the health risk assessment to calculate the hazard index (HI) and carcinogenic risk (CR) of various pollution sources. The results showed that the HI and CR of As and Ni to local residents were serious in the Beiyun River. Industrial activities (23.0%) are considered to be the largest contribution of heavy metals in Beiyun River, followed by traffic source (17%), agricultural source (16%), and atmospheric deposition (16%). The source-oriented risk assessment indicated that the largest contribution of HI and CR is agricultural source in the Beiyun River, followed by industrial activities. This study provides a target for the precise control of pollution sources, which is of great significance for improving the fine management of the water environment in the basin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助Denmark采纳,获得10
1秒前
1秒前
望望旺仔牛奶完成签到,获得积分10
1秒前
香蕉觅云应助luoshi采纳,获得10
2秒前
Zn应助gnr2000采纳,获得10
2秒前
二小完成签到,获得积分20
2秒前
拼搏思卉完成签到,获得积分10
2秒前
内向音响发布了新的文献求助10
2秒前
上官若男应助曼尼采纳,获得10
3秒前
飞羽发布了新的文献求助10
3秒前
科研通AI2S应助song99采纳,获得10
3秒前
momi完成签到 ,获得积分10
3秒前
哈哈哈呢完成签到 ,获得积分20
3秒前
LiShin发布了新的文献求助10
3秒前
phylicia发布了新的文献求助10
4秒前
萝卜完成签到,获得积分10
4秒前
4秒前
sjj完成签到,获得积分10
5秒前
只道寻常发布了新的文献求助10
5秒前
灵巧坤完成签到,获得积分20
6秒前
澹台灭明完成签到,获得积分10
6秒前
含蓄的鹤发布了新的文献求助10
6秒前
K. G.完成签到,获得积分0
6秒前
张云雷的大闸蟹完成签到,获得积分20
6秒前
6秒前
7秒前
8秒前
化学狗完成签到,获得积分10
8秒前
yud完成签到 ,获得积分10
8秒前
9秒前
拼搏思卉发布了新的文献求助10
9秒前
10秒前
雨碎寒江完成签到,获得积分10
10秒前
11秒前
会飞的木头完成签到,获得积分10
11秒前
雪白涵山发布了新的文献求助20
11秒前
shouyu29应助MADKAI采纳,获得10
11秒前
Seiswan发布了新的文献求助10
11秒前
小小菜鸟完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762