Applying Pattern Recognition as a Robust Approach for Silicone Oil Droplet Identification in Flow-Microscopy Images of Protein Formulations

硅油 可转让性 稳健性(进化) 滤波器(信号处理) 生物系统 计算机科学 材料科学 人工智能 计算机视觉 硅酮 模式识别(心理学) 生物医学工程 化学 复合材料 机器学习 工程类 生物 罗伊特 基因 生物化学
作者
X. Gregory Chen,Miglė Graužinytė,Aad van der Vaart,Björn Boll
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier BV]
卷期号:110 (4): 1643-1651 被引量:8
标识
DOI:10.1016/j.xphs.2020.10.044
摘要

Discrimination between potentially immunogenic protein aggregates and harmless pharmaceutical components, like silicone oil, is critical for drug development. Flow imaging techniques allow to measure and, in principle, classify subvisible particles in protein therapeutics. However, automated approaches for silicone oil discrimination are still lacking robustness in terms of accuracy and transferability. In this work, we present an image-based filter that can reliably identify silicone oil particles in protein therapeutics across a wide range of parenteral products. A two-step classification approach is designed for automated silicone oil droplet discrimination, based on particle images generated with a flow imaging instrument. Distinct from previously published methods, our novel image-based filter is trained using silicone oil droplet images only and is, thus, independent of the type of protein samples imaged. Benchmarked against alternative approaches, the proposed filter showed best overall performance in categorizing silicone oil and non-oil particles taken from a variety of protein solutions. Excellent accuracy was observed particularly for higher resolution images. The image-based filter can successfully distinguish silicone oil particles with high accuracy in protein solutions not used for creating the filter, showcasing its high transferability and potential for wide applicability in biopharmaceutical studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luobin完成签到,获得积分10
2秒前
喵喵发布了新的文献求助10
2秒前
科研通AI2S应助宇文宛菡采纳,获得10
3秒前
精灵夜雨完成签到,获得积分10
6秒前
chen发布了新的文献求助20
6秒前
科研通AI5应助烂漫的幻露采纳,获得10
7秒前
君无名完成签到 ,获得积分10
8秒前
ZN发布了新的文献求助10
11秒前
11秒前
852应助777采纳,获得10
11秒前
科研通AI5应助流星雨采纳,获得10
12秒前
HonestLiang完成签到,获得积分10
12秒前
无花果应助小乔采纳,获得10
13秒前
火星上的菲鹰应助2032jia采纳,获得10
14秒前
bgt完成签到 ,获得积分10
14秒前
和平发展完成签到 ,获得积分10
16秒前
扒开皮皮发布了新的文献求助10
18秒前
yuqinghui98发布了新的文献求助10
18秒前
今后应助可乐不加冰0303采纳,获得10
20秒前
喜欢秋天xx_y完成签到,获得积分20
20秒前
半壶月色半边天完成签到 ,获得积分10
21秒前
21秒前
22秒前
wanci应助ZN采纳,获得10
22秒前
23秒前
23秒前
TobyGarfielD完成签到 ,获得积分10
25秒前
YifanWang应助永曼采纳,获得20
25秒前
华仔应助浅斟低唱采纳,获得10
25秒前
诗蕊完成签到 ,获得积分10
26秒前
26秒前
777发布了新的文献求助10
27秒前
流星雨发布了新的文献求助10
27秒前
默默地读文献应助高兴123采纳,获得10
28秒前
小蘑菇应助高兴123采纳,获得10
28秒前
852应助高兴123采纳,获得10
28秒前
爆米花应助高兴123采纳,获得10
28秒前
FashionBoy应助高兴123采纳,获得30
28秒前
taozi完成签到,获得积分0
28秒前
NN完成签到,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671865
求助须知:如何正确求助?哪些是违规求助? 3228411
关于积分的说明 9780495
捐赠科研通 2938947
什么是DOI,文献DOI怎么找? 1610296
邀请新用户注册赠送积分活动 760634
科研通“疑难数据库(出版商)”最低求助积分说明 736119