Achieving Real-Time Path Planning in Unknown Environments Through Deep Neural Networks

规划师 运动规划 路径(计算) 计算机科学 卷积神经网络 任意角度路径规划 人工神经网络 人工智能 计算 实时计算 算法 计算机网络 机器人
作者
Keyu Wu,Han Wang,Mahdi Abolfazli Esfahani,Shenghai Yuan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2093-2102 被引量:30
标识
DOI:10.1109/tits.2020.3031962
摘要

Real-time path planning is crucial for intelligent vehicles to achieve autonomous navigation. In this paper, we propose a novel deep neural network (DNN) based method for real-time online path planning in unknown cluttered environments. Firstly, an end-to-end DNN architecture named online three-dimensional path planning network (OTDPP-Net) is designed to learn 3D local path planning policies. It determines actions in 3D space based on multiple value iteration computations approximated by recurrent 2D convolutional neural networks. Moreover, a path planning framework is also developed to realize near-optimal real-time online path planning. The effectiveness of the proposed planner is further improved by a switching scheme, and the path quality is optimized by line-of-sight checks. Both virtual and real-world experimental results demonstrate the remarkable performance of the proposed DNN-based path planner in terms of efficiency, success rate and path quality. Different from existing methods, the computational time and effectiveness of the developed DNN-based path planner are both independent of environmental conditions, which reveals its superiority in large-scale complex environments. A video of our experiments can be found at: https://youtu.be/gb4nSG4hd6s .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庆次完成签到 ,获得积分10
1秒前
ZY发布了新的文献求助10
1秒前
36456657应助跳跃的罡采纳,获得10
1秒前
36456657应助跳跃的罡采纳,获得10
1秒前
pluto应助跳跃的罡采纳,获得10
1秒前
丘比特应助跳跃的罡采纳,获得10
1秒前
1秒前
左手树完成签到,获得积分10
2秒前
2秒前
踏实的似狮完成签到,获得积分10
2秒前
正直画笔完成签到 ,获得积分10
2秒前
草履虫完成签到 ,获得积分10
3秒前
靓丽梦桃发布了新的文献求助10
3秒前
李创业发布了新的文献求助10
4秒前
炙热冰夏发布了新的文献求助10
4秒前
autobot1完成签到,获得积分10
4秒前
科研通AI5应助111采纳,获得10
4秒前
烟花应助Wang采纳,获得10
4秒前
曼尼发布了新的文献求助10
4秒前
赘婿应助桑姊采纳,获得10
6秒前
斯文败类应助Lvj采纳,获得10
6秒前
SYLH应助YHL采纳,获得10
6秒前
ranqi完成签到,获得积分10
6秒前
6秒前
7秒前
17808352679发布了新的文献求助10
7秒前
易生完成签到,获得积分10
8秒前
细腻曼冬完成签到 ,获得积分10
8秒前
8秒前
8秒前
9209完成签到 ,获得积分10
8秒前
9秒前
ranqi发布了新的文献求助10
9秒前
云落完成签到,获得积分10
9秒前
田様应助杨枝甘露樱桃采纳,获得10
9秒前
冲浪男孩226完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762