Kidney Segmentation in 3-D Ultrasound Images Using a Fast Phase-Based Approach

分割 初始化 人工智能 计算机科学 图像分割 计算机视觉 模式识别(心理学) 边缘检测 特征(语言学) 尺度空间分割 图像处理 图像(数学) 语言学 哲学 程序设计语言
作者
Helena R. Torres,Sandro Queirós,Pedro Morais,Bruno Oliveira,João Gomes‐Fonseca,Paulo Mota,Estêvão Lima,Jan D’hooge,Jaime C. Fonseca,João L. Vilaça
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 1521-1531 被引量:10
标识
DOI:10.1109/tuffc.2020.3039334
摘要

Renal ultrasound (US) imaging is the primary imaging modality for the assessment of the kidney's condition and is essential for diagnosis, treatment and surgical intervention planning, and follow-up. In this regard, kidney delineation in 3-D US images represents a relevant and challenging task in clinical practice. In this article, a novel framework is proposed to accurately segment the kidney in 3-D US images. The proposed framework can be divided into two stages: 1) initialization of the segmentation method and 2) kidney segmentation. Within the initialization stage, a phase-based feature detection method is used to detect edge points at kidney boundaries, from which the segmentation is automatically initialized. In the segmentation stage, the B-spline explicit active surface framework is adapted to obtain the final kidney contour. Here, a novel hybrid energy functional that combines localized region- and edge-based terms is used during segmentation. For the edge term, a fast-signed phase-based detection approach is applied. The proposed framework was validated in two distinct data sets: 1) 15 3-D challenging poor-quality US images used for experimental development, parameters assessment, and evaluation and 2) 42 3-D US images (both healthy and pathologic kidneys) used to unbiasedly assess its accuracy. Overall, the proposed method achieved a Dice overlap around 81% and an average point-to-surface error of ~2.8 mm. These results demonstrate the potential of the proposed method for clinical usage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安依丝完成签到,获得积分20
刚刚
germini99完成签到,获得积分10
1秒前
留胡子的尔琴完成签到,获得积分20
1秒前
1秒前
小张早日毕业完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
小雨哥应助穆小菜采纳,获得10
2秒前
11发布了新的文献求助10
2秒前
RUIZEZ发布了新的文献求助10
2秒前
2秒前
DAJI发布了新的文献求助10
3秒前
不安依丝发布了新的文献求助10
4秒前
aliu完成签到,获得积分10
4秒前
xl1990发布了新的文献求助10
4秒前
4秒前
单纯胡萝卜完成签到,获得积分10
4秒前
晨曦完成签到,获得积分10
4秒前
5秒前
猫七发布了新的文献求助10
6秒前
6秒前
6秒前
hhhhh发布了新的文献求助10
6秒前
Daisy发布了新的文献求助10
7秒前
酷波er应助孔德荣采纳,获得10
7秒前
7秒前
7秒前
8秒前
一只菜鸡发布了新的文献求助10
9秒前
潇洒的青丝完成签到,获得积分10
9秒前
四块五发布了新的文献求助10
10秒前
丘比特应助123采纳,获得10
10秒前
今后应助高挑的不凡采纳,获得10
10秒前
大个应助孔雀吃披萨采纳,获得10
10秒前
11秒前
科目三应助种花兔采纳,获得10
11秒前
追寻月饼发布了新的文献求助10
11秒前
13秒前
Drounp发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559210
求助须知:如何正确求助?哪些是违规求助? 3133831
关于积分的说明 9404212
捐赠科研通 2834006
什么是DOI,文献DOI怎么找? 1557743
邀请新用户注册赠送积分活动 727651
科研通“疑难数据库(出版商)”最低求助积分说明 716383