Centered kernel alignment inspired fuzzy support vector machine

核(代数) 人工智能 支持向量机 模糊逻辑 机器学习 水准点(测量) 计算机科学 启发式 数学 隶属函数 核方法 模式识别(心理学) 模糊集 数据挖掘 地理 组合数学 大地测量学
作者
Tinghua Wang,Yunzhi Qiu,Jialin Hua
出处
期刊:Fuzzy Sets and Systems [Elsevier]
卷期号:394: 110-123 被引量:18
标识
DOI:10.1016/j.fss.2019.09.017
摘要

Support vector machine (SVM) is a theoretically well motivated algorithm developed from statistical learning theory which has shown impressive performance in many fields. In spite of its success, it still suffers from the noise sensitivity problem originating from the assumption that each training point has equal importance or weight in the training process. To relax this problem, the SVM was extended to the fuzzy SVM (FSVM) by applying a fuzzy membership to each training point such that different training points can make different contributions to the learning of the decision surface. Although well-determined fuzzy memberships can improve classification performance, there are no general guidelines for their construction. In this paper, inspired by the centered kernel alignment (CKA), which measures the degree of similarity between two kernels (or kernel matrices), we propose a new fuzzy membership function calculation method in which a heuristic function derived from the CKA is used to calculate the dependence between a data point and its associated label. Although the CKA induced FSVM is similar to the kernel target alignment (KTA) induced FSVM, there is actually a critical difference. Without that centering, the definition of alignment does not correlate well with the performance of learning machines. Extensive experiments are performed on real-world data sets from the UCI benchmark repository and the application domain of computational biology which validate the superiority of the proposed FSVM model in terms of several classification performance measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
猪血糕yu完成签到,获得积分10
刚刚
通~发布了新的文献求助10
刚刚
1秒前
科研小垃圾完成签到,获得积分10
1秒前
2秒前
生动的煎蛋完成签到,获得积分10
2秒前
NexusExplorer应助marinemiao采纳,获得10
2秒前
CXS完成签到,获得积分10
3秒前
3秒前
3秒前
小郭完成签到,获得积分10
3秒前
3秒前
123发布了新的文献求助10
4秒前
NN123完成签到 ,获得积分10
4秒前
FFFFFFF应助艺玲采纳,获得10
5秒前
袁访天发布了新的文献求助10
5秒前
辇道增七完成签到,获得积分10
5秒前
5秒前
幽默的太阳完成签到 ,获得积分10
6秒前
6秒前
Nininni完成签到,获得积分10
6秒前
Tao完成签到,获得积分10
6秒前
6秒前
zqh发布了新的文献求助10
6秒前
6秒前
虫虫发布了新的文献求助10
7秒前
无情豪英完成签到 ,获得积分10
7秒前
7秒前
7秒前
完美世界应助sansan采纳,获得10
7秒前
Inahurry发布了新的文献求助10
8秒前
HopeStar发布了新的文献求助10
8秒前
华仔应助科研狗采纳,获得10
8秒前
田様应助Liu采纳,获得10
9秒前
CH完成签到,获得积分10
9秒前
核桃发布了新的文献求助10
9秒前
秣旎完成签到,获得积分10
9秒前
善学以致用应助明天更好采纳,获得10
9秒前
FashionBoy应助remimazolam采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740