Centered kernel alignment inspired fuzzy support vector machine

核(代数) 人工智能 支持向量机 模糊逻辑 机器学习 水准点(测量) 计算机科学 启发式 数学 隶属函数 核方法 模式识别(心理学) 模糊集 数据挖掘 地理 大地测量学 组合数学
作者
Tinghua Wang,Yunzhi Qiu,Jialin Hua
出处
期刊:Fuzzy Sets and Systems [Elsevier]
卷期号:394: 110-123 被引量:18
标识
DOI:10.1016/j.fss.2019.09.017
摘要

Support vector machine (SVM) is a theoretically well motivated algorithm developed from statistical learning theory which has shown impressive performance in many fields. In spite of its success, it still suffers from the noise sensitivity problem originating from the assumption that each training point has equal importance or weight in the training process. To relax this problem, the SVM was extended to the fuzzy SVM (FSVM) by applying a fuzzy membership to each training point such that different training points can make different contributions to the learning of the decision surface. Although well-determined fuzzy memberships can improve classification performance, there are no general guidelines for their construction. In this paper, inspired by the centered kernel alignment (CKA), which measures the degree of similarity between two kernels (or kernel matrices), we propose a new fuzzy membership function calculation method in which a heuristic function derived from the CKA is used to calculate the dependence between a data point and its associated label. Although the CKA induced FSVM is similar to the kernel target alignment (KTA) induced FSVM, there is actually a critical difference. Without that centering, the definition of alignment does not correlate well with the performance of learning machines. Extensive experiments are performed on real-world data sets from the UCI benchmark repository and the application domain of computational biology which validate the superiority of the proposed FSVM model in terms of several classification performance measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
agrlook完成签到,获得积分10
1秒前
1秒前
DQQ完成签到,获得积分10
1秒前
MR_Z完成签到,获得积分10
1秒前
1秒前
123完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
yangmingyu完成签到,获得积分10
3秒前
流光完成签到,获得积分10
3秒前
虚幻百川完成签到,获得积分10
3秒前
Chany完成签到 ,获得积分10
3秒前
3秒前
zsy发布了新的文献求助10
3秒前
风暴之灵完成签到,获得积分10
4秒前
冷如松发布了新的文献求助30
4秒前
lanlan发布了新的文献求助30
5秒前
zmz发布了新的文献求助50
5秒前
脑洞疼应助月亮不知道采纳,获得20
5秒前
6秒前
maclogos发布了新的文献求助10
6秒前
叹千泠发布了新的文献求助30
6秒前
hd完成签到,获得积分10
7秒前
7秒前
7秒前
共享精神应助微风往事采纳,获得10
7秒前
好想睡觉发布了新的文献求助10
7秒前
迷路赛君完成签到,获得积分10
8秒前
8秒前
大大完成签到,获得积分10
8秒前
文艺如凡完成签到,获得积分10
8秒前
雷家完成签到,获得积分10
8秒前
8秒前
闪闪的完成签到,获得积分20
8秒前
卷心菜发布了新的文献求助10
8秒前
深情安青应助Atopos采纳,获得10
8秒前
噗咔咔ya完成签到 ,获得积分10
8秒前
Hello应助Haoyun采纳,获得10
8秒前
顺心夜南应助miao采纳,获得20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005