Centered kernel alignment inspired fuzzy support vector machine

核(代数) 人工智能 支持向量机 模糊逻辑 机器学习 水准点(测量) 计算机科学 启发式 数学 隶属函数 核方法 模式识别(心理学) 模糊集 数据挖掘 地理 组合数学 大地测量学
作者
Tinghua Wang,Yunzhi Qiu,Jialin Hua
出处
期刊:Fuzzy Sets and Systems [Elsevier]
卷期号:394: 110-123 被引量:18
标识
DOI:10.1016/j.fss.2019.09.017
摘要

Support vector machine (SVM) is a theoretically well motivated algorithm developed from statistical learning theory which has shown impressive performance in many fields. In spite of its success, it still suffers from the noise sensitivity problem originating from the assumption that each training point has equal importance or weight in the training process. To relax this problem, the SVM was extended to the fuzzy SVM (FSVM) by applying a fuzzy membership to each training point such that different training points can make different contributions to the learning of the decision surface. Although well-determined fuzzy memberships can improve classification performance, there are no general guidelines for their construction. In this paper, inspired by the centered kernel alignment (CKA), which measures the degree of similarity between two kernels (or kernel matrices), we propose a new fuzzy membership function calculation method in which a heuristic function derived from the CKA is used to calculate the dependence between a data point and its associated label. Although the CKA induced FSVM is similar to the kernel target alignment (KTA) induced FSVM, there is actually a critical difference. Without that centering, the definition of alignment does not correlate well with the performance of learning machines. Extensive experiments are performed on real-world data sets from the UCI benchmark repository and the application domain of computational biology which validate the superiority of the proposed FSVM model in terms of several classification performance measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助超越好帅采纳,获得10
刚刚
刚刚
fxh完成签到,获得积分10
1秒前
ding应助无辜善愁采纳,获得10
1秒前
4秒前
七个娃娃完成签到 ,获得积分10
4秒前
Epiphany发布了新的文献求助10
4秒前
5秒前
JamesPei应助有魅力的香芦采纳,获得10
6秒前
书生应助shizi采纳,获得10
6秒前
行歌发布了新的文献求助10
7秒前
7秒前
务实的西牛应助DQY采纳,获得10
9秒前
10秒前
10秒前
无辜善愁发布了新的文献求助10
13秒前
尤狸子发布了新的文献求助30
14秒前
15秒前
研友_VZG7GZ应助yzthk采纳,获得10
15秒前
16秒前
龙龍泷发布了新的文献求助10
18秒前
22秒前
梦会故乡发布了新的文献求助10
23秒前
大模型应助科研通管家采纳,获得10
23秒前
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
午见千山应助科研通管家采纳,获得10
23秒前
午见千山应助科研通管家采纳,获得10
23秒前
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
午见千山应助科研通管家采纳,获得10
23秒前
26秒前
今天吃啥发布了新的文献求助10
27秒前
27秒前
姜敏敏完成签到 ,获得积分10
28秒前
hegui发布了新的文献求助30
29秒前
29秒前
29秒前
淡定秀发完成签到 ,获得积分10
30秒前
myf发布了新的文献求助10
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243735
求助须知:如何正确求助?哪些是违规求助? 2887552
关于积分的说明 8249110
捐赠科研通 2556261
什么是DOI,文献DOI怎么找? 1384361
科研通“疑难数据库(出版商)”最低求助积分说明 649827
邀请新用户注册赠送积分活动 625776