A quantile-based g-computation approach to addressing the effects of exposure mixtures

分位数 分位数回归 计算 统计 计量经济学 推论 数学 因果推理 样本量测定 计算机科学 算法 人工智能
作者
Alexander P. Keil,Jessie P. Buckley,Katie M. O’Brien,Kelly K. Ferguson,Shanshan Zhao,Alexandra J. White
出处
期刊:Environmental epidemiology [Wolters Kluwer]
卷期号:3 (Supplement 1): 44-44 被引量:34
标识
DOI:10.1097/01.ee9.0000606120.58494.9d
摘要

OPS 05: Statistical methods to analyze mixtures, Room 114, Floor 1, August 27, 2019, 1:30 PM - 3:00 PM Exposure mixtures frequently occur in epidemiologic data, particularly in the fields of environmental and nutritional epidemiology. Various strategies have arisen to answer questions about exposure mixtures, including methods such as weighted quantile sum regression that estimate a joint effect of the mixture components. Few other methods have been used to estimate such joint effects, even though they are of great interest for informing interventions that may act on multiple exposures. We demonstrate a new approach to estimating the joint effects of a mixture: quantile g-computation. This approach combines the inferential simplicity of weighted quantile sum regression and the immense flexibility of g-computation, a method of causal effect estimation. We demonstrate, using simulations and large sample formulae, that weighted quantile sum regression can be considered a special case of quantile g-computation, and that quantile g-computation often provides improved inference at sample sizes typically encountered in epidemiologic studies, and when the assumptions of weighted quantile sum regression are not met. We examine, in particular, the impacts of large numbers of non-causal exposures, exposure correlation, unmeasured confounding, and non-linearity of exposure effects. We show that, counter to intuition, quantile g-computation estimates can become more precise as exposure correlation increases. Quantile g-computation appears robust to many problems routinely encountered in analyses of exposure mixtures. Methods, such as quantile g-computation, that can yield unbiased estimates of the effect of the mixture are essential for understanding the effects of potential interventions that may act on many components of the mixture, and our approach may serve as an excellent tool for quantifying such effects as a way to bridge gaps between epidemiologic analysis and public health action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕子应助诚心的大白采纳,获得10
2秒前
陈雷完成签到,获得积分10
2秒前
害羞的鸡翅完成签到,获得积分10
2秒前
2秒前
xubee完成签到,获得积分10
3秒前
赵保钢完成签到,获得积分10
3秒前
CGAT发布了新的文献求助10
4秒前
keke发布了新的文献求助10
4秒前
杨家欢发布了新的文献求助10
5秒前
田様应助Xiaoyang采纳,获得10
5秒前
彪壮的斩完成签到,获得积分10
5秒前
6秒前
Darknewnew完成签到,获得积分10
6秒前
7秒前
7秒前
Singularity应助罗明芳采纳,获得10
7秒前
8秒前
9秒前
9秒前
星辰大海应助彪壮的斩采纳,获得10
10秒前
副本完成签到 ,获得积分10
11秒前
12秒前
Lcccccc发布了新的文献求助30
12秒前
12秒前
GC发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
科目三应助Su采纳,获得10
14秒前
16秒前
诚心的大白完成签到,获得积分10
16秒前
18秒前
小蘑菇应助CGAT采纳,获得10
18秒前
TIMEIEXIST发布了新的文献求助10
19秒前
19秒前
NikolasZ发布了新的文献求助10
19秒前
Kyrie完成签到,获得积分10
21秒前
邵初蓝发布了新的文献求助10
22秒前
在水一方应助稳重的悟空采纳,获得10
22秒前
Huang_being完成签到,获得积分10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756864
求助须知:如何正确求助?哪些是违规求助? 3300215
关于积分的说明 10112900
捐赠科研通 3014778
什么是DOI,文献DOI怎么找? 1655700
邀请新用户注册赠送积分活动 790050
科研通“疑难数据库(出版商)”最低求助积分说明 753552