材料科学
高分辨率透射电子显微镜
X射线光电子能谱
介孔材料
化学工程
傅里叶变换红外光谱
透射电子显微镜
比表面积
扫描电子显微镜
分析化学(期刊)
碳纤维
氮化物
纳米技术
催化作用
复合材料
有机化学
图层(电子)
复合数
化学
工程类
标识
DOI:10.1002/adfm.200700783
摘要
Abstract Two‐dimensional mesoporous carbon nitride (MCN) with tunable pore diameters have been successfully prepared for the first time using SBA‐15 materials with different pore diameters as templates through a simple polymerization reaction between ethylenediamine (EDA) and carbon tetrachloride (CTC) by a nano hard‐templating approach. The obtained materials have been unambiguously characterized using X‐ray diffraction (XRD), N 2 adsorption, high‐resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), high‐resolution scanning electron microscopy (HRSEM), X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT‐IR) spectroscopy, and CHN analysis. The results show that the pore diameter of the MCN materials can be easily tuned from 4.2 to 6.4 nm without affecting their structural order. XRD, HRTEM and N 2 adsorption results reveal that the materials are structurally well ordered with a two‐dimensional porous structure, a high surface area and a large pore volume. It is also demonstrated for the first time that the textural parameters such as the specific pore volume, the specific surface area and the pore diameter, and the nitrogen content of the MCN materials can be controlled by the simple adjustment of the EDA to CTC weight ratio. The carbon to nitrogen ratio of the MCN decreases from 4.3 to 3.3 with increasing EDA to CTC weight ratio from 0.3 to 0.9. The optimum EDA to CTC weight ratio required for fabricating the well‐ordered MCN materials with excellent textural parameters and high nitrogen content is around 0.45. The catalytic activity of the materials has been tested in the Friedel‐Crafts acylation of benzene using hexanoyl chloride as the acylating agent. The materials are highly active and show a high conversion and 100 % product selectivity to caprophenone.
科研通智能强力驱动
Strongly Powered by AbleSci AI