生物
生物能学
移植
细胞生物学
干细胞
糖酵解
结构完整性
精子发生
新陈代谢
线粒体
内科学
生物化学
内分泌学
医学
结构工程
工程类
作者
Aileen R. Helsel,Melissa J. Oatley
标识
DOI:10.1016/j.stemcr.2017.03.004
摘要
Summary
The application of spermatogonial stem cell (SSC) transplantation for regenerating male fertility requires amplification of SSC number in vitro during which the integrity to re-establish spermatogenesis must be preserved. Conventional conditions supporting proliferation of SSCs from mouse pups have been the basis for developing methodology with adult human cells but are unrefined. We found that the integrity to regenerate spermatogenesis after transplantation declines with advancing time in primary cultures of pup SSCs and that the efficacy of deriving cultures from adult SSCs is limited with conventional conditions. To address these deficiencies, we optimized the culture environment to favor glycolysis as the primary bioenergetics process. In these conditions, regenerative integrity of pup and adult SSCs was significantly improved and the efficiency of establishing primary cultures was 100%. Collectively, these findings suggest that SSCs are primed for conditions favoring glycolytic activity, and matching culture environments to their bioenergetics is critical for maintaining functional integrity.
科研通智能强力驱动
Strongly Powered by AbleSci AI