De Novo Purine Biosynthesis in Drug Resistance and Tumor Relapse of Childhood ALL

生物 癌症研究 遗传学 突变 核苷酸回收 嘌呤代谢 基因 核苷酸 生物化学
作者
Hui Li,Benshang Li,Fan Yang,Cai‐Wen Duan,Yun Bai,Jun J. Yang,Jing Chen,Arend von Stackelberg,Hongzhuan Chen,Jingyan Tang,Adolfo A. Ferrando,Jinghui Zhang,Shengyue Wang,Renate Kirschner‐Schwabe,Bin‐Bing S. Zhou
出处
期刊:Blood [American Society of Hematology]
卷期号:126 (23): 2627-2627 被引量:2
标识
DOI:10.1182/blood.v126.23.2627.2627
摘要

Abstract Background: Relapse is the leading cause of mortality in children with acute lymphoblastic leukemia (ALL). Studies have shown that most ALL cases are polyclonal at diagnosis and that genetic changes in individual subclones influence sensitity to therapy and subsequent clonal evolution during therapy; but the molecular details remain to be worked out. Among different pathways enriched for mutations at relapse, purine metabolism is particularly interesting for two reasons: first, thiopurines are widely used in the ALL combination chemotherapy regimens, and are prodrugs that are converted by the purine salvage pathway to cytotoxic metabolites. Second, de novo nucleotide biosynthesis is often upregulated in cancer cells, and it is believed that sufficient nucleotide pools are required to maintain genomic stability, could bypass oncogene-induced senescence and promote tumor progression1. Therefore, we focus our current study on de novo purine biosynthesis in drug resistance and tumor relapse of childhood ALL. Methods and Results: Using whole-exome sequencing, we identified relapse-specific mutations in the phosphoribosyl pyrophosphate synthetase 1 gene (PRPS1), which encodes a rate-limiting purine biosynthesis enzyme, in 24/358 (6.7%) relapsed childhood B cell ALL (B-ALL) cases. Targeted sequencing identified mutations in additional genes in de novo purine biosynthesis pathway, providing further genetic evidence for its importance in relapsed ALL. All individuals with PRPS1 mutation relapsed early on-treatment (P <0.001), having an inferior prognosis1. Using various functional assays, we demonstrated that rather than causing a simple gain-of-function effect, the mutations in PRPS1 resulted in the disruption of the normal feedback inhibition of purine synthesis, in which the enzyme remained active despite an increased concentration of nucleoside analogs. PRPS1 mutants increased synthesis of the nucleoside inosine monophosphate, its metabolite hypoxanthine (HX) and de novo purine biosynthesis intermediates (e.g. AICAR, SAICAR) in Reh cells. Increased intracellular HX can competively inhibit the conversion of thiopurines into their active metabolites. Furthermore, inhibition of de novo purine biosynthesis in vitro, either by CRISPR-Cas9 genome editing of de novo purine synthesis pathway genes (GART, ATIC etc.) or treatment with a pathway inhibitor lometrexol (GART inhibitor) alleviated the metabolic disturbance and drug resistance induced by PRPS1 mutations. Using ultra-deep sequencing of unique serial remission samples before clinical relapse, we noticed that the PRPS1 mutant allele fraction increased drastically before clinical relapse, suggesting rapid clonal expansion occurs after the acquisition of a PRPS1 mutation. Interestingly, we also noticed that PPRS1 mutation coexist with RAS mutation in many relapse cases and at single cell resolution. Functional analysis revealed that tumor cells which harbored RAS and PRPS1 double mutations are more drug resistant than those with RAS or PRPS1 mutation alone. Previous studies have shown that oncogenic RAS mutation can also induce various stress responses including oncogene-induced senensence and DNA damage response (DDR), which all could impede tumor cell proliferation during relapse. In vitro, we found PRPS1 mutation can release the replication and metabolic stress caused by RAS mutation, in addition to their role in thiopurine resistance. The PRPS1 mutants not only increase the nucleotide pools but also elevate purine biosynthesis intermediate AICAR, which can activate AMPK and reduce the RAS mutant-induced DDR. We are currently working on in vitro and in vivo models (including patient derived xenograft models) to further test the double mutant's effects on tumor-reinitiation and clonal evolution during ALL relapse. Conclusions: We demonstrated that negative feedback-defective PRPS1 mutants can drive de novo purine biosynthesis, which can exert drug resistance and reduce genomic instability during tumor relapse. Our study highlights the importance of de novo purine biosynthesis in the pathogenesis of relapse, and suggests a diagnostic approach to predicting early relapse and a therapeutic strategy to circumventing resistance in ALL. 1 Li et al. Negative feedback-defective PRPS1 mutants drivee thiopurine resistance in relapsed childhood ALL. Nature Medicine,21(6): 563-571 (2015) Disclosures No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾夏包完成签到,获得积分10
刚刚
小土豆发布了新的文献求助50
1秒前
科研通AI5应助跑在颖采纳,获得10
1秒前
追寻代真发布了新的文献求助10
2秒前
mrmrer完成签到,获得积分20
2秒前
2秒前
2秒前
毛慢慢发布了新的文献求助10
3秒前
3秒前
今天不学习明天变垃圾完成签到,获得积分10
3秒前
4秒前
4秒前
布布完成签到,获得积分10
5秒前
一独白发布了新的文献求助10
5秒前
周周完成签到 ,获得积分10
5秒前
淡然完成签到,获得积分10
6秒前
明理小土豆完成签到,获得积分10
6秒前
刘国建郭菱香完成签到,获得积分10
6秒前
嘤嘤嘤完成签到,获得积分10
6秒前
九川应助粱自中采纳,获得10
6秒前
无辜之卉完成签到,获得积分10
7秒前
无花果应助Island采纳,获得10
7秒前
7秒前
SHDeathlock发布了新的文献求助200
8秒前
Owen应助醒醒采纳,获得10
8秒前
无心的代桃完成签到,获得积分10
9秒前
追寻代真完成签到,获得积分10
9秒前
晓兴兴完成签到,获得积分10
9秒前
leon发布了新的文献求助10
10秒前
洽洽瓜子shine完成签到,获得积分10
10秒前
简单的大白菜真实的钥匙完成签到,获得积分10
11秒前
12秒前
一独白完成签到,获得积分10
13秒前
在水一方应助坚强的樱采纳,获得10
13秒前
慕青应助尼亚吉拉采纳,获得10
14秒前
快乐小白菜应助甜酱采纳,获得10
14秒前
14秒前
qq应助毛慢慢采纳,获得10
15秒前
15秒前
科研通AI5应助吴岳采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762