Ultrasound Standard Plane Detection Using a Composite Neural Network Framework

计算机科学 卷积神经网络 人工智能 特征(语言学) 生物识别 人工神经网络 工作量 机器学习 计算机视觉 模式识别(心理学) 语言学 操作系统 哲学
作者
Hao Chen,Lingyun Wu,Qi Dou,Jing Qin,Shengli Li,Jie‐Zhi Cheng,Dong Ni,Pheng‐Ann Heng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:47 (6): 1576-1586 被引量:150
标识
DOI:10.1109/tcyb.2017.2685080
摘要

Ultrasound (US) imaging is a widely used screening tool for obstetric examination and diagnosis. Accurate acquisition of fetal standard planes with key anatomical structures is very crucial for substantial biometric measurement and diagnosis. However, the standard plane acquisition is a labor-intensive task and requires operator equipped with a thorough knowledge of fetal anatomy. Therefore, automatic approaches are highly demanded in clinical practice to alleviate the workload and boost the examination efficiency. The automatic detection of standard planes from US videos remains a challenging problem due to the high intraclass and low interclass variations of standard planes, and the relatively low image quality. Unlike previous studies which were specifically designed for individual anatomical standard planes, respectively, we present a general framework for the automatic identification of different standard planes from US videos. Distinct from conventional way that devises hand-crafted visual features for detection, our framework explores in- and between-plane feature learning with a novel composite framework of the convolutional and recurrent neural networks. To further address the issue of limited training data, a multitask learning framework is implemented to exploit common knowledge across detection tasks of distinctive standard planes for the augmentation of feature learning. Extensive experiments have been conducted on hundreds of US fetus videos to corroborate the better efficacy of the proposed framework on the difficult standard plane detection problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水电费发布了新的文献求助10
刚刚
1秒前
2秒前
Chenjz发布了新的文献求助10
3秒前
万能图书馆应助玉玊采纳,获得10
5秒前
5秒前
感动的一刀完成签到,获得积分10
6秒前
6秒前
7秒前
敏感的寄凡完成签到 ,获得积分10
7秒前
kiki发布了新的文献求助10
8秒前
8秒前
8秒前
mimianuo完成签到,获得积分10
9秒前
华仔应助DM采纳,获得10
9秒前
哈哈完成签到,获得积分10
10秒前
11秒前
11秒前
生动芝麻发布了新的文献求助10
11秒前
Xiao发布了新的文献求助10
11秒前
吴女士发布了新的文献求助10
11秒前
xinxin发布了新的文献求助10
12秒前
隐形曼青应助水电费采纳,获得10
12秒前
庚午发布了新的文献求助10
12秒前
lvsehx发布了新的文献求助10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
15秒前
所所应助科研通管家采纳,获得100
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
亘古匆匆应助科研通管家采纳,获得30
15秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3704222
求助须知:如何正确求助?哪些是违规求助? 3253812
关于积分的说明 9885792
捐赠科研通 2965619
什么是DOI,文献DOI怎么找? 1626461
邀请新用户注册赠送积分活动 770741
科研通“疑难数据库(出版商)”最低求助积分说明 743046