未折叠蛋白反应
脐静脉
内质网
上睑下垂
细胞内
细胞毒性
人脐静脉内皮细胞
细胞间粘附分子-1
化学
毒性
分子生物学
生物
细胞生物学
生物物理学
细胞凋亡
生物化学
程序性细胞死亡
体外
有机化学
作者
Yi Cao,Weijie Xiao,Shuang Li,Dexin Qiu
摘要
The success of graphene oxide (GO) has attracted extensive research interests in developing novel 2D nanomaterials (NMs). Graphdiyne (GDY) is a new member of carbon-based 2D NMs possessing sp- and sp2 -hybridized carbon atoms. However, the toxicity of GDY is less investigated as GO. In this study, we compared the toxicity of GDY and GO with human umbilical vein endothelial cells (HUVECs). Exposure to up to 100-μg/ml GDY and GO induced cytotoxicity, but there was no statistically significant difference between GDY and GO. At noncytotoxic concentration, 25-μg/ml GDY or GO led to the internalization of NMs, typically in cytoplasm but not in nuclei. Only GO but not GDY significantly increased THP-1 adhesion onto NM-exposed HUVECs. Meanwhile, compared with GDY, GO more effectively promoted the release of soluble intracellular cell adhesion molecule-1 (sICAM-1), indicating the differential effects of GDY and GO on endothelial activation. Neither GDY nor GO induced intracellular superoxide. However, GO significantly promoted the expression of endoplasmic reticulum (ER) stress genes activating transcription factor 4 (ATF4) and X-box binding protein 1 spliced (XBP-1s), as well pyroptosis genes NLR family pyrin domain containing 3 (NLRP3) and gasdermin D (GSDMD), whereas GDY did not show this effect. The results suggested that GDY and GO could be internalized into HUVECs leading to cytotoxic effects. However, GO was more potent to activate endothelial activation probably due to the activation of ER stress and pyroptosis genes.
科研通智能强力驱动
Strongly Powered by AbleSci AI