Machine Learning Outperforms Existing Clinical Scoring Tools in the Prediction of Postoperative Atrial Fibrillation During Intensive Care Unit Admission After Cardiac Surgery

重症监护室 接收机工作特性 医学 逻辑回归 机器学习 随机森林 支持向量机 心脏外科 人工智能 决策树 曲线下面积 内科学 心脏病学 心房颤动 计算机科学
作者
Roshan Karri,Andrew Kawai,Yoke Jia Thong,Dhruvesh M. Ramson,Luke A. Perry,Reny Segal,Julian A. Smith,Jahan C. Penny‐Dimri
出处
期刊:Heart Lung and Circulation [Elsevier]
卷期号:30 (12): 1929-1937 被引量:23
标识
DOI:10.1016/j.hlc.2021.05.101
摘要

Objective(s) Using the Medical Information Mart for Intensive Care III (MIMIC-III) database, we compared the performance of machine learning (ML) to the to the established gold standard scoring tool (POAF Score) in predicting postoperative atrial fibrillation (POAF) during intensive care unit (ICU) admission after cardiac surgery. Methods Random forest classifier (RF), decision tree classifier (DT), logistic regression (LR), K neighbours classifier (KNN), support vector machine (SVM), and gradient boosted machine (GBM) were compared to the POAF Score. Cross-validation was used to assess the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of ML models. POAF Score performance confidence intervals were generated using 1,000 bootstraps. Risk profiles for GBM were generated using Shapley additive values. Results A total of 6,349 ICU admissions encompassing 6,040 patients were included. POAF occurred in 1,364 of the 6,349 admissions (21.5%). For predicting POAF during ICU admission after cardiac surgery, GBM, LR, RF, KNN, SVM and DT achieved an AUC of 0.74 (0.71–0.77), 0.73 (0.71–0.75), 0.72 (0.69–0.75), 0.68 (0.67–0.69), 0.67 (0.66–0.68) and 0.59 (0.55–0.63) respectively. The POAF Score AUC was 0.63 (0.62–0.64). Shapley additive values analysis of GBM generated patient level explanations for each prediction. Conclusion Machine learning models based on readily available preoperative data can outperform clinical scoring tools for predicting POAF during ICU admission after cardiac surgery. Explanatory models are shown to have potential in personalising POAF risk profiles for patients by illustrating probabilistic input variable contributions. Future research is required to evaluate the clinical utility and safety of implementing ML-driven tools for POAF prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yong发布了新的文献求助10
2秒前
香蕉觅云应助热心战斗机采纳,获得10
6秒前
6秒前
梵樱完成签到,获得积分10
6秒前
贪玩的访风完成签到 ,获得积分10
7秒前
完美绮琴完成签到,获得积分10
7秒前
8秒前
机灵的半鬼关注了科研通微信公众号
10秒前
10秒前
友好白凡发布了新的文献求助10
10秒前
鲸鱼发布了新的文献求助50
12秒前
无花果应助Tin采纳,获得10
13秒前
14秒前
14秒前
15秒前
16秒前
16秒前
温柔完成签到,获得积分10
17秒前
18秒前
19秒前
闫伊森完成签到,获得积分10
19秒前
19秒前
王小啦发布了新的文献求助10
19秒前
ximei发布了新的文献求助30
20秒前
干净谷冬发布了新的文献求助20
20秒前
梵樱发布了新的文献求助10
21秒前
22秒前
23秒前
这个郭我背了完成签到,获得积分10
24秒前
稽TR发布了新的文献求助10
25秒前
Handy完成签到,获得积分10
26秒前
kkkkkk发布了新的文献求助30
26秒前
26秒前
李健应助知命的火采纳,获得10
28秒前
29秒前
小黑驴发布了新的文献求助10
30秒前
小二郎应助遇见飞儿采纳,获得10
33秒前
SolderOH完成签到,获得积分10
33秒前
浮三白完成签到,获得积分10
33秒前
星河完成签到,获得积分10
34秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3384030
求助须知:如何正确求助?哪些是违规求助? 2998059
关于积分的说明 8777481
捐赠科研通 2683675
什么是DOI,文献DOI怎么找? 1469829
科研通“疑难数据库(出版商)”最低求助积分说明 679553
邀请新用户注册赠送积分活动 671837