AMFB: Attention based multimodal Factorized Bilinear Pooling for multimodal Fake News Detection

计算机科学 误传 新闻聚合器 代表(政治) 阅读(过程) 社会化媒体 联营 特征(语言学) 情报检索 人工智能 万维网 计算机安全 哲学 法学 政治 语言学 政治学
作者
Rina Kumari,Asif Ekbal
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:184: 115412-115412 被引量:80
标识
DOI:10.1016/j.eswa.2021.115412
摘要

Fake news is the information or stories that are intentionally created to deceive or mislead the readers. In recent times, Fake news detection has attracted the attention of researchers and practitioners due to its many-fold benefits, including bringing in preventive measures to tackle the dissemination of misinformation that could otherwise disturb the social fabrics. Social media in recent times are heavily loaded with multimedia news and information. People prefer online news reading and find it more informative and convenient if they have access to multimedia content in the forms of text, images, audio, and videos. In early studies, researchers have proposed several fake news detection mechanisms that mostly utilize the textual features and not proper to learn multimodal (textual + visual) shared representation. To overcome these limitations, in this paper, we propose a multimodal fake news detection framework with appropriate multimodal feature fusion that leverages information from text and image and tries to maximize the correlation between them to get the efficient multimodal shared representation. We empirically show that text, when combined with the image, can improve the performance of the model. The model detects the post once it is introduced into the network in an early stage. At the early stage of a news post’s introduction into the network, the model takes the text and image of the post as input and decides whether this is fake or genuine. Since this model only analyzes news contents, It does not require any prior information regarding the user and network details. This framework has four different sub-modules viz. Attention Based Stacked Bidirectional Long Short Term Memory (ABS-BiLSTM) for textual feature representation, Attention Based Multilevel Convolutional Neural Network–Recurrent Neural Network (ABM-CNN–RNN) for visual feature extraction, multimodal Factorized Bilinear Pooling (MFB) for feature fusion and finally Multi-Layer Perceptron (MLP) for the classification. We perform experiments on two publicly available datasets, viz. Twitter and Weibo. Evaluation results show the efficacy of our proposed approach that performs significantly better compared to the state-of-the-art models. It shows to outperform the current state-of-the-art by approximately 10 points for the Twitter dataset. In contrast, the Weibo dataset achieves an overall better performance with balanced F1-scores between fake and real classes. Furthermore, the complexity of our proposed model is significantly lower than the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
2秒前
chichenglin完成签到 ,获得积分10
9秒前
迅速的幻雪完成签到 ,获得积分10
10秒前
dent强完成签到 ,获得积分10
11秒前
11秒前
su完成签到 ,获得积分10
14秒前
猪猪hero发布了新的文献求助10
16秒前
Yasmin关注了科研通微信公众号
23秒前
王王完成签到 ,获得积分10
24秒前
风中珩发布了新的文献求助10
41秒前
CL完成签到,获得积分10
42秒前
XXJJQ发布了新的文献求助30
42秒前
坚强的广山完成签到,获得积分0
43秒前
小乙猪完成签到 ,获得积分0
45秒前
明理青寒完成签到,获得积分10
48秒前
Xii完成签到 ,获得积分10
51秒前
叔克关注了科研通微信公众号
53秒前
dracovu完成签到,获得积分10
53秒前
小莫完成签到 ,获得积分10
55秒前
1分钟前
潘fujun完成签到 ,获得积分10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
叔克发布了新的文献求助10
1分钟前
chengmin完成签到 ,获得积分10
1分钟前
lullu完成签到 ,获得积分10
1分钟前
如意竺完成签到,获得积分10
1分钟前
伯赏凝旋完成签到 ,获得积分10
1分钟前
凉面完成签到 ,获得积分10
1分钟前
hhd完成签到 ,获得积分10
1分钟前
XXJJQ完成签到,获得积分20
1分钟前
怡心亭完成签到 ,获得积分0
1分钟前
叶远望完成签到 ,获得积分10
1分钟前
露露完成签到 ,获得积分10
2分钟前
聪明的泡面完成签到 ,获得积分10
2分钟前
eternal_dreams完成签到 ,获得积分10
2分钟前
不展完成签到 ,获得积分10
2分钟前
蛋妮完成签到 ,获得积分10
2分钟前
假装学霸完成签到 ,获得积分10
2分钟前
meijuan1210完成签到 ,获得积分10
2分钟前
一丢丢完成签到 ,获得积分10
2分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463646
求助须知:如何正确求助?哪些是违规求助? 3057044
关于积分的说明 9055263
捐赠科研通 2746966
什么是DOI,文献DOI怎么找? 1507198
科研通“疑难数据库(出版商)”最低求助积分说明 696451
邀请新用户注册赠送积分活动 695956