AMFB: Attention based multimodal Factorized Bilinear Pooling for multimodal Fake News Detection

计算机科学 误传 新闻聚合器 代表(政治) 阅读(过程) 社会化媒体 联营 特征(语言学) 情报检索 人工智能 万维网 计算机安全 哲学 法学 政治 语言学 政治学
作者
Rina Kumari,Asif Ekbal
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:184: 115412-115412 被引量:83
标识
DOI:10.1016/j.eswa.2021.115412
摘要

Fake news is the information or stories that are intentionally created to deceive or mislead the readers. In recent times, Fake news detection has attracted the attention of researchers and practitioners due to its many-fold benefits, including bringing in preventive measures to tackle the dissemination of misinformation that could otherwise disturb the social fabrics. Social media in recent times are heavily loaded with multimedia news and information. People prefer online news reading and find it more informative and convenient if they have access to multimedia content in the forms of text, images, audio, and videos. In early studies, researchers have proposed several fake news detection mechanisms that mostly utilize the textual features and not proper to learn multimodal (textual + visual) shared representation. To overcome these limitations, in this paper, we propose a multimodal fake news detection framework with appropriate multimodal feature fusion that leverages information from text and image and tries to maximize the correlation between them to get the efficient multimodal shared representation. We empirically show that text, when combined with the image, can improve the performance of the model. The model detects the post once it is introduced into the network in an early stage. At the early stage of a news post’s introduction into the network, the model takes the text and image of the post as input and decides whether this is fake or genuine. Since this model only analyzes news contents, It does not require any prior information regarding the user and network details. This framework has four different sub-modules viz. Attention Based Stacked Bidirectional Long Short Term Memory (ABS-BiLSTM) for textual feature representation, Attention Based Multilevel Convolutional Neural Network–Recurrent Neural Network (ABM-CNN–RNN) for visual feature extraction, multimodal Factorized Bilinear Pooling (MFB) for feature fusion and finally Multi-Layer Perceptron (MLP) for the classification. We perform experiments on two publicly available datasets, viz. Twitter and Weibo. Evaluation results show the efficacy of our proposed approach that performs significantly better compared to the state-of-the-art models. It shows to outperform the current state-of-the-art by approximately 10 points for the Twitter dataset. In contrast, the Weibo dataset achieves an overall better performance with balanced F1-scores between fake and real classes. Furthermore, the complexity of our proposed model is significantly lower than the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
严惜发布了新的文献求助10
6秒前
7秒前
SYLH应助Alioth采纳,获得10
7秒前
Lucas应助次一口8采纳,获得10
9秒前
Lucas应助哈哈哈采纳,获得10
9秒前
10秒前
JamesPei应助严惜采纳,获得10
10秒前
64658应助萱萱采纳,获得10
13秒前
单薄店员发布了新的文献求助10
14秒前
16秒前
16秒前
64658应助百尺竿头采纳,获得30
17秒前
LLSSLL完成签到,获得积分10
18秒前
123发布了新的文献求助10
19秒前
20秒前
SciGPT应助调皮万怨采纳,获得10
20秒前
21秒前
共享精神应助kk采纳,获得10
24秒前
Jally发布了新的文献求助10
24秒前
爆米花应助小林采纳,获得10
25秒前
Ava应助合适的帆布鞋采纳,获得10
25秒前
不安机器猫完成签到,获得积分10
28秒前
汉堡包应助恋雅颖月采纳,获得10
28秒前
下雨的颜色完成签到,获得积分10
29秒前
genomed应助刘家小姐姐采纳,获得10
29秒前
30秒前
Qiao应助今晚吃什么采纳,获得10
30秒前
31秒前
31秒前
aaaaaa发布了新的文献求助10
31秒前
32秒前
热热带汤发布了新的文献求助10
32秒前
35秒前
35秒前
我不是胖子完成签到,获得积分20
35秒前
小林发布了新的文献求助10
36秒前
褪黑素发布了新的文献求助30
36秒前
38秒前
左丘冬寒完成签到,获得积分10
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962593
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141766
捐赠科研通 3241330
什么是DOI,文献DOI怎么找? 1791510
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803483