Highly accurate protein structure prediction with AlphaFold

蛋白质结构预测 计算机科学 卡斯普 蛋白质结构 线程(蛋白质序列) 人工智能 结构生物信息学 机器学习 计算生物学 人工神经网络 蛋白质超家族 序列(生物学) 功能(生物学) 生物 进化生物学 基因 生物化学 遗传学
作者
John Jumper,K Taki,Alexander Pritzel,Tim Green,Michael Figurnov,Olaf Ronneberger,Kathryn Tunyasuvunakool,Russ Bates,Augustin Žídek,Anna Potapenko,Alex Bridgland,Clemens Meyer,Simon Köhl,Andrew J. Ballard,Andrew Cowie,Bernardino Romera‐Paredes,Stanislav Nikolov,Rishub Jain,Jonas Adler,Trevor Back
出处
期刊:Nature [Nature Portfolio]
卷期号:596 (7873): 583-589 被引量:38653
标识
DOI:10.1038/s41586-021-03819-2
摘要

Abstract Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort 1–4 , the structures of around 100,000 unique proteins have been determined 5 , but this represents a small fraction of the billions of known protein sequences 6,7 . Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’ 8 —has been an important open research problem for more than 50 years 9 . Despite recent progress 10–14 , existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14) 15 , demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澄桦完成签到,获得积分10
1秒前
上官若男应助伟风采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
电光十字完成签到,获得积分10
2秒前
Tianling完成签到,获得积分0
2秒前
LIXI完成签到,获得积分20
2秒前
2秒前
在水一方应助微眠采纳,获得10
2秒前
科学低调修仙完成签到,获得积分10
3秒前
叫我学弟发布了新的文献求助10
3秒前
Eternity2025应助yanxu采纳,获得30
3秒前
Gray发布了新的文献求助10
4秒前
bjwh发布了新的文献求助30
4秒前
4秒前
澄桦发布了新的文献求助10
4秒前
张雨彤完成签到 ,获得积分10
5秒前
情怀应助Ruhe采纳,获得10
5秒前
5秒前
Gray发布了新的文献求助10
5秒前
Gray发布了新的文献求助10
5秒前
Gray发布了新的文献求助10
5秒前
Gray发布了新的文献求助10
5秒前
Gray发布了新的文献求助10
5秒前
Gray发布了新的文献求助10
5秒前
Gray发布了新的文献求助10
5秒前
Gray发布了新的文献求助10
5秒前
Gray发布了新的文献求助10
5秒前
Gray发布了新的文献求助10
5秒前
Gray发布了新的文献求助10
5秒前
duang发布了新的文献求助10
5秒前
Gray发布了新的文献求助10
5秒前
Gray发布了新的文献求助10
5秒前
Ava应助wwwww采纳,获得10
6秒前
乐观海云完成签到 ,获得积分10
6秒前
沉甸甸完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257269
求助须知:如何正确求助?哪些是违规求助? 4419464
关于积分的说明 13756172
捐赠科研通 4292683
什么是DOI,文献DOI怎么找? 2355623
邀请新用户注册赠送积分活动 1352050
关于科研通互助平台的介绍 1312824