Highly accurate protein structure prediction with AlphaFold

蛋白质结构预测 计算机科学 卡斯普 蛋白质结构 线程(蛋白质序列) 人工智能 结构生物信息学 机器学习 计算生物学 人工神经网络 蛋白质超家族 序列(生物学) 功能(生物学) 生物 进化生物学 基因 生物化学 遗传学
作者
John Jumper,K Taki,Alexander Pritzel,Tim Green,Michael Figurnov,Olaf Ronneberger,Kathryn Tunyasuvunakool,Russ Bates,Augustin Žídek,Anna Potapenko,Alex Bridgland,Clemens Meyer,Simon Kohl,Andrew J. Ballard,Andrew Cowie,Bernardino Romera‐Paredes,Stanislav Nikolov,Rishub Jain,Jonas Adler,Trevor Back
出处
期刊:Nature [Nature Portfolio]
卷期号:596 (7873): 583-589 被引量:31384
标识
DOI:10.1038/s41586-021-03819-2
摘要

Abstract Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort 1–4 , the structures of around 100,000 unique proteins have been determined 5 , but this represents a small fraction of the billions of known protein sequences 6,7 . Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’ 8 —has been an important open research problem for more than 50 years 9 . Despite recent progress 10–14 , existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14) 15 , demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马上毕业完成签到 ,获得积分10
1秒前
seannnnnnn完成签到,获得积分10
1秒前
欢呼妙菱发布了新的文献求助10
1秒前
kk完成签到,获得积分10
1秒前
无助的老头完成签到,获得积分20
2秒前
2秒前
3秒前
jimmy完成签到,获得积分10
3秒前
3秒前
香蕉觅云应助知12采纳,获得10
3秒前
冰山发布了新的文献求助10
3秒前
RenS完成签到,获得积分10
5秒前
沙耶酱完成签到,获得积分10
5秒前
yyyxxx完成签到,获得积分10
5秒前
满天星辰发布了新的文献求助10
6秒前
Ava应助好叭采纳,获得10
6秒前
Rita应助yuqinghui98采纳,获得10
6秒前
Hello应助PQ采纳,获得10
6秒前
8秒前
9秒前
忐忑的尔蝶完成签到,获得积分10
9秒前
123发布了新的文献求助10
9秒前
9秒前
烟花应助Finley采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
Mila发布了新的文献求助20
10秒前
11秒前
11秒前
12秒前
知12完成签到,获得积分10
12秒前
蝉鸣完成签到,获得积分10
12秒前
抱抱是只可爱小猫完成签到,获得积分10
12秒前
悦耳的芒果完成签到,获得积分10
13秒前
13秒前
13秒前
顺心靖雁完成签到,获得积分10
14秒前
上官若男应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
最短的咒发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650