Porous NiCo2O4–FeCo2O4 Nanowire Arrays as Advanced Electrodes for High-Performance Flexible Asymmetric Supercapacitors

材料科学 超级电容器 电极 阳极 双金属片 纳米技术 电化学 石墨烯 电解质 阴极 循环伏安法 化学工程 化学 工程类 物理化学 冶金 金属
作者
Xian Wu,Xiaoya Zhou,Libing Hu,Sheng Zhang,Wangguang Wang,Shaochun Tang
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:35 (15): 12680-12687 被引量:7
标识
DOI:10.1021/acs.energyfuels.1c01517
摘要

Efficient supercapacitors have attracted wide attention by the exploration of hybrid materials integrating the merits of individual components as promising electrode materials. However, the construction of advanced hybrid structures for highly enhanced electrochemical energy storage is still challenging. Herein, integration of a strong compositional synergy between various bimetallic oxides, MCo2O4 (M = Ni, Fe, and so on), and inducing rich defects for more redox sites are proposed. A novel NiCo2O4–FeCo2O4 hybrid array of nanowires with a large number of nanopores and crystal interfaces is synthesized via hydrothermal reactions and fast calcination. The performance of the NiCo2O4–FeCo2O4/carbon cloth electrode is good and is far beyond that of single-component MCo2O4 electrodes, which exhibits a specific capacity of 490 F/g at 4.0 A/g. The integration of bimetallic redox centers reconstructing the electronic coordination and the nanopores providing highly exposed active surfaces and active sites for highly efficient electrolyte ion diffusion contribute to the enhanced performance. An asymmetric solid-state supercapacitor composed of NiCo2O4–FeCo2O4 and graphene (both using carbon cloth as substrates) as the anode and cathode electrodes, respectively, exhibits a high energy density of 88.9 Wh/cm2 (at a power density of 800 mW/cm2). In particular, the flexible asymmetric device exhibits excellent deformation-tolerant electrochemical stability with nearly overlapping cyclic voltammetry curves at varying bending angles. This work proposes additional methodologies to the fabrication of excellent-performance flexible all-solid-state devices for wearable devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaoyan完成签到,获得积分10
1秒前
1秒前
1秒前
酷波er应助坚定莫茗采纳,获得10
1秒前
2秒前
姜姜发布了新的文献求助10
2秒前
玛丽完成签到,获得积分10
2秒前
blue完成签到 ,获得积分10
2秒前
10完成签到,获得积分20
3秒前
4秒前
4秒前
港港完成签到 ,获得积分10
4秒前
4秒前
timeless发布了新的文献求助10
5秒前
5秒前
5秒前
10发布了新的文献求助10
6秒前
xdx应助桔子树采纳,获得10
6秒前
邓云峰888发布了新的文献求助10
7秒前
漂亮的念双完成签到,获得积分10
8秒前
毛豆应助GT采纳,获得10
8秒前
星辰大海应助清脆安南采纳,获得10
8秒前
。。。发布了新的文献求助10
9秒前
小白发布了新的文献求助10
9秒前
华仔应助背后的又蓝采纳,获得10
9秒前
Akim应助njseu采纳,获得10
9秒前
haokeyan发布了新的文献求助10
10秒前
12秒前
乐乐应助闪闪绮露采纳,获得10
12秒前
丰知然应助晓海采纳,获得10
13秒前
慕青应助kaifeiQi采纳,获得10
14秒前
顾矜应助zhuo采纳,获得10
14秒前
14秒前
可爱的函函应助EVELYN采纳,获得10
14秒前
14秒前
liu发布了新的文献求助10
14秒前
专一的妙海完成签到,获得积分10
15秒前
切点1006完成签到,获得积分10
15秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300503
求助须知:如何正确求助?哪些是违规求助? 2935166
关于积分的说明 8472075
捐赠科研通 2608856
什么是DOI,文献DOI怎么找? 1424405
科研通“疑难数据库(出版商)”最低求助积分说明 662011
邀请新用户注册赠送积分活动 645730