斑马鱼
氧化应激
内生
半胱氨酸
平衡
细胞生物学
体内
化学
缺氧(环境)
生物物理学
活性氧
生物化学
生物
氧气
酶
有机化学
生物技术
基因
作者
Xia Zhang,Liangwei Zhang,Xiaoyan Wang,Xiaoyue Han,Yan Huang,Bowei Li,Lingxin Chen
标识
DOI:10.1016/j.jhazmat.2021.126476
摘要
Increasingly grim environmental pollutions are closely related with the occurrence and development of diseases. However, it’s obscure how environmental stress disturbs the normal physiological process, and then how endogenous reactive species mend the cases. Hypoxia/reperfusion (H/R), a common and intractable injury in aquaculture and clinic, can induce oxidative stress and ultimately cause irreversible injury to organism. Cysteine (Cys) plays essential roles in maintaining transduction of numerous reactive species and redox homeostasis in subcellular structures, cells and organisms. A great deal of fluorescence research about Cys are focusing on development of selective probes but with poor exploration of the biofunction under environmental stress. Therefore, it is of great significance to examine the bio-effects of Cys against H/R stress. In the present work, we design a fluorescent probe BCy-AC for in situ detecting Cys, the unique Enol-Keto tautomerization of fluorophore BCy-Keto propels the reaction process which will improve the sensitivity and potential application performance of the probe. BCy-AC is conveniently applied to visualize Cys in HT-22 cells, zebrafish and mice tissues. Moreover, imaging results obtained from H/R models reveal that endogenous Cys changes with hypoxia and reperfusion time and Cys pretreatment effectively defend H/R injury in cells and in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI