DNA甲基化
表观遗传学
甲基化
CpG站点
化学
内皮功能障碍
小RNA
氧化应激
分子生物学
生物
细胞生物学
癌症研究
生物化学
基因表达
DNA
基因
内分泌学
作者
Jyotirmaya Behera,Kimberly E. Kelly,Neetu Tyagi
摘要
Ethanol (ET) causes cerebrovascular dysfunction by altering homocysteine (Hcy) metabolism and by causing oxidative stress. However, there are no strategies to prevent ET-induced epigenetic deregulation of tight junction protein (hyper-methylation) and endothelial cell permeability to date. Hydrogen sulfide (H2 S) has an antioxidative, antiapoptotic, and anti-inflammatory effect. Here, we investigated the protective role of H2 S in ET-induced endothelial permeability through epigenetic changes in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to 50 mM ET treatment in the presence or absence of 50 μM NaHS (H2 S donor). The result demonstrates that ET-induced cellular toxicity increased intracellular Hcy levels, which further intensified mitochondrial dysfunction and energy defects. Using miScript microRNA (miRNA) polymerase chain reaction array-based screening, we identified a particular miRNA, miR-218, as a novel target of ET-induced DNA methyltransferase-3a (DNMT3a) activation. miR-218 influences CpG island methylation of the zonula occludens 1 (ZO-1) promoter in the endothelial cells. We discovered that ET suppressed miR-218 levels and induced endothelial permeability via DNMT3a-mediated ZO-1 hyper-methylation. Treatment with mito-TEMPO (mitochondria-targeted antioxidant), 5'-azacitidine (DNMT inhibitor), or miR-218 overexpression was shown to protect endothelial cells against ET-induced permeability. Also, bEnd3 cells pretreated with NaHS attenuated ET-induced vascular permeability and prevented CpG island methylation at the promoter. In conclusion, our data provide evidence that H2 S treatment protects vascular integrity from ET-induced stress by mitigating CpG (ZO-1 promoter) DNA hyper-methylation. This finding uncovers a new mechanistic understanding of NaHS/H2 S, that may have therapeutic potential in preventing or diminishing ET-induced brain vascular permeability and dysfunction induced by alcoholism.
科研通智能强力驱动
Strongly Powered by AbleSci AI