Price-Based Residential Demand Response Management in Smart Grids: A Reinforcement Learning-Based Approach

能源管理
作者
Yanni Wan,Jiahu Qin,Xinghuo Yu,Tao Yang,Yu Kang
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 123-134 被引量:29
标识
DOI:10.1109/jas.2021.1004287
摘要

This paper studies price-based residential demand response management (PB-RDRM) in smart grids, in which non-dispatchable and dispatchable loads (including general loads and plug-in electric vehicles (PEVs)) are both involved. The PB-RDRM is composed of a bi-level optimization problem, in which the upper-level dynamic retail pricing problem aims to maximize the profit of a utility company (UC) by selecting optimal retail prices (RPs), while the lower-level demand response (DR) problem expects to minimize the comprehensive cost of loads by coordinating their energy consumption behavior. The challenges here are mainly two-fold: 1) the uncertainty of energy consumption and RPs; 2) the flexible PEVs' temporally coupled constraints, which make it impossible to directly develop a model-based optimization algorithm to solve the PB-RDRM. To address these challenges, we first model the dynamic retail pricing problem as a Markovian decision process (MDP), and then employ a model-free reinforcement learning (RL) algorithm to learn the optimal dynamic RPs of UC according to the loads' responses. Our proposed RL-based DR algorithm is benchmarked against two model-based optimization approaches (i.e., distributed dual decomposition-based (DDB) method and distributed primal-dual interior (PDI)-based method), which require exact load and electricity price models. The comparison results show that, compared with the benchmark solutions, our proposed algorithm can not only adaptively decide the RPs through on-line learning processes, but also achieve larger social welfare within an unknown electricity market environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
理想国的建造者完成签到,获得积分10
1秒前
听白发布了新的文献求助10
1秒前
koreey发布了新的文献求助10
3秒前
3秒前
YCG完成签到 ,获得积分10
4秒前
砍柴人发布了新的文献求助10
4秒前
10秒前
10秒前
李爱国应助my196755采纳,获得10
11秒前
听话的捕发布了新的文献求助10
12秒前
12秒前
cindy发布了新的文献求助10
15秒前
18秒前
18秒前
lcw发布了新的文献求助10
20秒前
玛尼发布了新的文献求助10
22秒前
23秒前
汉堡包应助崂山喜羊羊采纳,获得10
23秒前
my196755发布了新的文献求助10
25秒前
暮沐晓光完成签到,获得积分10
26秒前
希拉里罗德姆完成签到 ,获得积分10
28秒前
koala1s发布了新的文献求助10
28秒前
29秒前
香蕉觅云应助sda采纳,获得10
30秒前
30秒前
搜集达人应助lcw采纳,获得10
30秒前
xxx完成签到 ,获得积分10
33秒前
斯文麦片完成签到 ,获得积分10
34秒前
39秒前
大脚完成签到,获得积分10
39秒前
MQY完成签到,获得积分10
39秒前
魁梧的鸿煊完成签到 ,获得积分10
40秒前
搜集达人应助754采纳,获得10
40秒前
思源应助张小愚采纳,获得10
41秒前
43秒前
执着烧鹅完成签到 ,获得积分10
44秒前
44秒前
MQY发布了新的文献求助10
44秒前
能干连碧完成签到,获得积分20
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755028
求助须知:如何正确求助?哪些是违规求助? 3298314
关于积分的说明 10104457
捐赠科研通 3012915
什么是DOI,文献DOI怎么找? 1654852
邀请新用户注册赠送积分活动 789194
科研通“疑难数据库(出版商)”最低求助积分说明 753233