材料科学
微波食品加热
吸收(声学)
碳纤维
表面改性
化学工程
热解
兴奋剂
纳米材料
纳米颗粒
反射损耗
极化(电化学)
纳米技术
涂层
复合材料
光电子学
复合数
化学
物理
工程类
量子力学
物理化学
作者
Xueqing Zuo,Yongpeng Zhao,Hao Zhang,Hui Huang,Cao Zhou,Tianze Cong,Muhammad Javid,Xuan Yang,Yifeng Zhang,Zeng Fan,Lujun Pan
标识
DOI:10.1016/j.jcis.2021.10.065
摘要
Surface modification and composition control for nanomaterials are effective strategies for designing high-performance microwave absorbing materials (MWAMs). Herein, we have successfully fabricated Co-anchored and N-doped carbon layers on the surfaces of helical carbon nanocoils (CNCs) by wet chemical and pyrolysis methods, denoted as Co@N-Carbon/CNCs. It is found that pure CNCs show a very good microwave absorption performance under a filling ratio of only 6%, which is attributed to the uniformly dispersed conductive network and the cross polarization induced by the unique chiral and spiral morphology. The coating of N-doped carbon layers on CNCs further enriches polarization losses and the uniform anchoring of Co nanoparticles in these layers generates magnetic losses, which enhance the absorption ability and improve the low frequency performance. As compared with the pure CNCs-filling samples, the optimized Co@N-Carbon/CNCs-2.4 enhances the absorption capacity in the lower frequency range under the same thickness, and realizes the decreased thickness from 3.2 to 2.8 mm in the same X band, as well as the decreased thickness from 2.2 to 1.9 mm in the Ku band. Resultantly, a specific effective absorption wave value of 22 GHz g-1 mm-1 has been achieved, which enlightens the synthesis of ultrathin and light high-performance MWAMs.
科研通智能强力驱动
Strongly Powered by AbleSci AI