Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data

多光谱图像 支持向量机 人工智能 机器学习 初始化 随机森林 计算机科学 归一化差异植被指数 数学 算法
作者
Paulo Eduardo Teodoro,Larissa Pereira Ribeiro Teodoro,Fabio Henrique Rojo Baio,Carlos Antonio da Silva Junior,Regimar Garcia dos Santos,Ana Paula Marques Ramos,Mayara Maezano Faita Pinheiro,Lucas Prado Osco,Wesley Nunes Gonçalves,Alexsandro Monteiro Carneiro,José Marcato Junior,Hemerson Pistori,Luciano Shozo Shiratsuchi
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (22): 4632-4632
标识
DOI:10.3390/rs13224632
摘要

In soybean, there is a lack of research aiming to compare the performance of machine learning (ML) and deep learning (DL) methods to predict more than one agronomic variable, such as days to maturity (DM), plant height (PH), and grain yield (GY). As these variables are important to developing an overall precision farming model, we propose a machine learning approach to predict DM, PH, and GY for soybean cultivars based on multispectral bands. The field experiment considered 524 genotypes of soybeans in the 2017/2018 and 2018/2019 growing seasons and a multitemporal–multispectral dataset collected by embedded sensor in an unmanned aerial vehicle (UAV). We proposed a multilayer deep learning regression network, trained during 2000 epochs using an adaptive subgradient method, a random Gaussian initialization, and a 50% dropout in the first hidden layer for regularization. Three different scenarios, including only spectral bands, only vegetation indices, and spectral bands plus vegetation indices, were adopted to infer each variable (PH, DM, and GY). The DL model performance was compared against shallow learning methods such as random forest (RF), support vector machine (SVM), and linear regression (LR). The results indicate that our approach has the potential to predict soybean-related variables using multispectral bands only. Both DL and RF models presented a strong (r surpassing 0.77) prediction capacity for the PH variable, regardless of the adopted input variables group. Our results demonstrated that the DL model (r = 0.66) was superior to predict DM when the input variable was the spectral bands. For GY, all machine learning models evaluated presented similar performance (r ranging from 0.42 to 0.44) for each tested scenario. In conclusion, this study demonstrated an efficient approach to a computational solution capable of predicting multiple important soybean crop variables based on remote sensing data. Future research could benefit from the information presented here and be implemented in subsequent processes related to soybean cultivars or other types of agronomic crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nicole完成签到 ,获得积分10
1秒前
科研通AI2S应助牛马一生采纳,获得10
2秒前
always完成签到 ,获得积分10
2秒前
MXX发布了新的文献求助10
3秒前
Gentleman完成签到,获得积分10
5秒前
科研顺利完成签到,获得积分10
5秒前
白开水发布了新的文献求助10
5秒前
云木完成签到 ,获得积分10
6秒前
小儿时节完成签到,获得积分10
7秒前
ussiMi完成签到 ,获得积分10
7秒前
8秒前
梓泽丘墟应助sarah采纳,获得10
10秒前
文献荒完成签到,获得积分10
11秒前
jilongwang发布了新的文献求助10
12秒前
火星上小土豆完成签到 ,获得积分10
13秒前
fanlin完成签到,获得积分0
15秒前
pitto完成签到,获得积分10
15秒前
yi111完成签到,获得积分10
17秒前
乐园鸟完成签到,获得积分10
17秒前
领导范儿应助张一楠采纳,获得10
18秒前
自然的听寒完成签到 ,获得积分10
19秒前
20秒前
奋斗冬萱完成签到,获得积分10
20秒前
结实的元灵完成签到,获得积分10
21秒前
毛毛虫完成签到 ,获得积分10
22秒前
fujun完成签到,获得积分10
23秒前
sj完成签到,获得积分10
23秒前
24秒前
向响响完成签到 ,获得积分10
27秒前
jilongwang完成签到,获得积分10
28秒前
空白发布了新的文献求助30
28秒前
xzz完成签到 ,获得积分10
30秒前
隐形曼青应助加减乘除采纳,获得10
30秒前
33秒前
爱听歌衬衫完成签到,获得积分10
33秒前
是是是发布了新的文献求助20
35秒前
35秒前
墨旱莲完成签到,获得积分10
36秒前
fogsea完成签到,获得积分0
37秒前
37秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162539
求助须知:如何正确求助?哪些是违规求助? 2813402
关于积分的说明 7900247
捐赠科研通 2472973
什么是DOI,文献DOI怎么找? 1316615
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175