Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data

多光谱图像 支持向量机 人工智能 机器学习 初始化 随机森林 计算机科学 归一化差异植被指数 数学 算法
作者
Paulo Eduardo Teodoro,Larissa Pereira Ribeiro Teodoro,Fabio Henrique Rojo Baio,Carlos Antonio da Silva Junior,Regimar Garcia dos Santos,Ana Paula Marques Ramos,Mayara Maezano Faita Pinheiro,Lucas Prado Osco,Wesley Nunes Gonçalves,Alexsandro Monteiro Carneiro,José Marcato Junior,Hemerson Pistori,Luciano Shozo Shiratsuchi
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (22): 4632-4632
标识
DOI:10.3390/rs13224632
摘要

In soybean, there is a lack of research aiming to compare the performance of machine learning (ML) and deep learning (DL) methods to predict more than one agronomic variable, such as days to maturity (DM), plant height (PH), and grain yield (GY). As these variables are important to developing an overall precision farming model, we propose a machine learning approach to predict DM, PH, and GY for soybean cultivars based on multispectral bands. The field experiment considered 524 genotypes of soybeans in the 2017/2018 and 2018/2019 growing seasons and a multitemporal–multispectral dataset collected by embedded sensor in an unmanned aerial vehicle (UAV). We proposed a multilayer deep learning regression network, trained during 2000 epochs using an adaptive subgradient method, a random Gaussian initialization, and a 50% dropout in the first hidden layer for regularization. Three different scenarios, including only spectral bands, only vegetation indices, and spectral bands plus vegetation indices, were adopted to infer each variable (PH, DM, and GY). The DL model performance was compared against shallow learning methods such as random forest (RF), support vector machine (SVM), and linear regression (LR). The results indicate that our approach has the potential to predict soybean-related variables using multispectral bands only. Both DL and RF models presented a strong (r surpassing 0.77) prediction capacity for the PH variable, regardless of the adopted input variables group. Our results demonstrated that the DL model (r = 0.66) was superior to predict DM when the input variable was the spectral bands. For GY, all machine learning models evaluated presented similar performance (r ranging from 0.42 to 0.44) for each tested scenario. In conclusion, this study demonstrated an efficient approach to a computational solution capable of predicting multiple important soybean crop variables based on remote sensing data. Future research could benefit from the information presented here and be implemented in subsequent processes related to soybean cultivars or other types of agronomic crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
君君发布了新的文献求助10
1秒前
可爱香槟发布了新的文献求助20
1秒前
充电宝应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得30
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
光的本质发布了新的文献求助20
7秒前
666应助募股小采纳,获得10
8秒前
8秒前
orixero应助早晚会疯采纳,获得10
8秒前
知许解夏应助TYJ采纳,获得10
8秒前
seedcode发布了新的文献求助10
9秒前
9秒前
可爱香槟完成签到,获得积分10
9秒前
田様应助coini采纳,获得10
10秒前
可爱香槟发布了新的文献求助30
11秒前
千跃应助18238496540采纳,获得10
12秒前
hazhuxixi发布了新的文献求助10
14秒前
马晓武发布了新的文献求助30
14秒前
在水一方应助50009797采纳,获得10
14秒前
zhao完成签到 ,获得积分10
15秒前
17秒前
我是老大应助牛牛眉目采纳,获得10
17秒前
知许解夏应助TYJ采纳,获得10
20秒前
储婉怡发布了新的文献求助20
20秒前
21秒前
2023204306324发布了新的文献求助10
23秒前
单纯天晴完成签到,获得积分10
24秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388