Hyperspectral Image Denoising Using Factor Group Sparsity-Regularized Nonconvex Low-Rank Approximation

高光谱成像 奇异值分解 数学 秩(图论) 因式分解 规范(哲学) 矩阵范数 矩阵分解 降噪 近似算法 低秩近似 算法 应用数学 组合数学 人工智能 计算机科学 纯数学 特征向量 物理 法学 张量(固有定义) 量子力学 政治学
作者
Yong Chen,Ting‐Zhu Huang,Wei He,Xi-Le Zhao,Hongyan Zhang,Jinshan Zeng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:70
标识
DOI:10.1109/tgrs.2021.3110769
摘要

Hyperspectral image (HSI) mixed noise removal is a fundamental problem and an important preprocessing step in remote sensing fields. The low-rank approximation-based methods have been verified effective to encode the global spectral correlation for HSI denoising. However, due to the large scale and complexity of real HSI, previous low-rank HSI denoising techniques encounter several problems, including coarse rank approximation (such as nuclear norm), the high computational cost of singular value decomposition (SVD) (such as Schatten $p$ -norm), and adaptive rank selection (such as low-rank factorization). In this article, two novel factor group sparsity-regularized nonconvex low-rank approximation (FGSLR) methods are introduced for HSI denoising, which can simultaneously overcome the mentioned issues of previous works. The FGSLR methods capture the spectral correlation via low-rank factorization, meanwhile utilizing factor group sparsity regularization to further enhance the low-rank property. It is SVD-free and robust to rank selection. Moreover, FGSLR is equivalent to Schatten $p$ -norm approximation ( Theorem 1 ), and thus FGSLR is tighter than the nuclear norm in terms of rank approximation. To preserve the spatial information of HSI in the denoising process, the total variation regularization is also incorporated into the proposed FGSLR models. Specifically, the proximal alternating minimization is designed to solve the proposed FGSLR models. Experimental results have demonstrated that the proposed FGSLR methods significantly outperform existing low-rank approximation-based HSI denoising methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asilamu发布了新的文献求助10
1秒前
3秒前
微笑驳发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
小满发布了新的文献求助10
4秒前
科研通AI5应助偷懒采纳,获得10
5秒前
虚幻的素发布了新的文献求助10
5秒前
hua发布了新的文献求助20
5秒前
Song发布了新的文献求助10
6秒前
受伤巧曼发布了新的文献求助10
6秒前
丘比特应助小何同学采纳,获得10
6秒前
8秒前
8秒前
NIUBEN发布了新的文献求助10
9秒前
赘婿应助活泼的活泼采纳,获得10
10秒前
谨慎秋寒发布了新的文献求助10
10秒前
凯凯完成签到,获得积分10
10秒前
凉兮发布了新的文献求助10
10秒前
iNk应助GSQ采纳,获得20
11秒前
11秒前
一一应助简艾采纳,获得10
11秒前
123完成签到,获得积分10
11秒前
11秒前
balabala发布了新的文献求助10
11秒前
12秒前
小满完成签到,获得积分10
12秒前
13秒前
ding应助shea采纳,获得10
13秒前
TT工作好认真完成签到 ,获得积分10
13秒前
下路润发布了新的文献求助10
13秒前
13秒前
momo完成签到,获得积分10
13秒前
Ava应助紧张的世德采纳,获得10
13秒前
莫愁完成签到,获得积分10
14秒前
在水一方应助山茶采纳,获得10
14秒前
小饼干完成签到,获得积分10
14秒前
芽芽配茄子完成签到,获得积分10
14秒前
凯凯发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559024
求助须知:如何正确求助?哪些是违规求助? 3985748
关于积分的说明 12340214
捐赠科研通 3656286
什么是DOI,文献DOI怎么找? 2014287
邀请新用户注册赠送积分活动 1049131
科研通“疑难数据库(出版商)”最低求助积分说明 937477