Multi-Constraint Latent Representation Learning for Prognosis Analysis Using Multi-Modal Data

计算机科学 过度拟合 人工智能 特征选择 机器学习 特征学习 特征(语言学) 排名(信息检索) 模式识别(心理学) 数据挖掘 判别式 人工神经网络 语言学 哲学
作者
Zhenyuan Ning,Zehui Lin,Qing Xiao,Denghui Du,Qianjin Feng,Wufan Chen,Yu Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 3737-3750 被引量:12
标识
DOI:10.1109/tnnls.2021.3112194
摘要

The Cox proportional hazard model has been widely applied to cancer prognosis prediction. Nowadays, multi-modal data, such as histopathological images and gene data, have advanced this field by providing histologic phenotype and genotype information. However, how to efficiently fuse and select the complementary information of high-dimensional multi-modal data remains challenging for Cox model, as it generally does not equip with feature fusion/selection mechanism. Many previous studies typically perform feature fusion/selection in the original feature space before Cox modeling. Alternatively, learning a latent shared feature space that is tailored for Cox model and simultaneously keeps sparsity is desirable. In addition, existing Cox-based models commonly pay little attention to the actual length of the observed time that may help to boost the model's performance. In this article, we propose a novel Cox-driven multi-constraint latent representation learning framework for prognosis analysis with multi-modal data. Specifically, for efficient feature fusion, a multi-modal latent space is learned via a bi-mapping approach under ranking and regression constraints. The ranking constraint utilizes the log-partial likelihood of Cox model to induce learning discriminative representations in a task-oriented manner. Meanwhile, the representations also benefit from regression constraint, which imposes the supervision of specific survival time on representation learning. To improve generalization and alleviate overfitting, we further introduce similarity and sparsity constraints to encourage extra consistency and sparseness. Extensive experiments on three datasets acquired from The Cancer Genome Atlas (TCGA) demonstrate that the proposed method is superior to state-of-the-art Cox-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粑粑发布了新的文献求助10
刚刚
Xxxxxxx完成签到 ,获得积分10
1秒前
脑洞疼应助戈壁滩的鱼采纳,获得10
1秒前
冷傲雨寒完成签到,获得积分10
3秒前
道明嗣完成签到 ,获得积分10
4秒前
5秒前
5秒前
惜墨应助粑粑采纳,获得10
6秒前
风荏完成签到,获得积分10
7秒前
辛勤万声发布了新的文献求助10
7秒前
酷波er应助wang采纳,获得100
7秒前
复杂焱完成签到 ,获得积分20
8秒前
Mxue完成签到,获得积分10
8秒前
SSS发布了新的文献求助10
9秒前
无花果应助风趣的烤鸡采纳,获得10
9秒前
12秒前
zzz完成签到,获得积分10
14秒前
aji发布了新的文献求助10
16秒前
16秒前
16秒前
汉堡包应助复杂的如萱采纳,获得10
16秒前
17秒前
搜集达人应助温暖白梦采纳,获得10
18秒前
干净问筠完成签到,获得积分10
18秒前
岐祁琪奇发布了新的文献求助10
18秒前
三棱镜完成签到,获得积分10
18秒前
18秒前
18秒前
SMLW完成签到 ,获得积分10
19秒前
完美世界应助qiaokizhang采纳,获得30
20秒前
迹K完成签到,获得积分10
20秒前
吴彦祖发布了新的文献求助10
21秒前
科研通AI2S应助研友_想想采纳,获得10
23秒前
坦率的惊蛰完成签到,获得积分10
23秒前
Simon发布了新的文献求助10
24秒前
aji完成签到,获得积分20
24秒前
睡懒觉完成签到 ,获得积分10
25秒前
云胡不喜完成签到,获得积分10
26秒前
26秒前
李朝富发布了新的文献求助10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137230
求助须知:如何正确求助?哪些是违规求助? 2788312
关于积分的说明 7785628
捐赠科研通 2444330
什么是DOI,文献DOI怎么找? 1299894
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023