Multi-Constraint Latent Representation Learning for Prognosis Analysis Using Multi-Modal Data

计算机科学 过度拟合 人工智能 特征选择 机器学习 特征学习 特征(语言学) 排名(信息检索) 约束(计算机辅助设计) 模式识别(心理学) 数据挖掘 判别式 数学 人工神经网络 几何学 哲学 语言学
作者
Zhenyuan Ning,Zehui Lin,Qing Xiao,Denghui Du,Qianjin Feng,Wufan Chen,Yu Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 3737-3750 被引量:23
标识
DOI:10.1109/tnnls.2021.3112194
摘要

The Cox proportional hazard model has been widely applied to cancer prognosis prediction. Nowadays, multi-modal data, such as histopathological images and gene data, have advanced this field by providing histologic phenotype and genotype information. However, how to efficiently fuse and select the complementary information of high-dimensional multi-modal data remains challenging for Cox model, as it generally does not equip with feature fusion/selection mechanism. Many previous studies typically perform feature fusion/selection in the original feature space before Cox modeling. Alternatively, learning a latent shared feature space that is tailored for Cox model and simultaneously keeps sparsity is desirable. In addition, existing Cox-based models commonly pay little attention to the actual length of the observed time that may help to boost the model's performance. In this article, we propose a novel Cox-driven multi-constraint latent representation learning framework for prognosis analysis with multi-modal data. Specifically, for efficient feature fusion, a multi-modal latent space is learned via a bi-mapping approach under ranking and regression constraints. The ranking constraint utilizes the log-partial likelihood of Cox model to induce learning discriminative representations in a task-oriented manner. Meanwhile, the representations also benefit from regression constraint, which imposes the supervision of specific survival time on representation learning. To improve generalization and alleviate overfitting, we further introduce similarity and sparsity constraints to encourage extra consistency and sparseness. Extensive experiments on three datasets acquired from The Cancer Genome Atlas (TCGA) demonstrate that the proposed method is superior to state-of-the-art Cox-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术小白完成签到,获得积分10
1秒前
ZAY发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
zy发布了新的文献求助10
1秒前
candy发布了新的文献求助10
1秒前
忧心的洙发布了新的文献求助10
2秒前
3秒前
自由保温杯应助XXXD采纳,获得30
3秒前
dengdeng完成签到 ,获得积分10
3秒前
高贵振家发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
lh完成签到,获得积分10
5秒前
烟花应助Xiaopan采纳,获得10
5秒前
科研顺利完成签到,获得积分20
5秒前
Jade完成签到,获得积分10
5秒前
bkagyin应助受伤幻桃采纳,获得10
6秒前
青秋鱼罐头完成签到,获得积分10
6秒前
huahua完成签到,获得积分10
6秒前
chinh完成签到,获得积分10
6秒前
UGO发布了新的文献求助10
7秒前
joeking完成签到 ,获得积分10
7秒前
金咪完成签到,获得积分20
7秒前
wuwuhu完成签到,获得积分10
8秒前
柠檬不萌完成签到,获得积分20
8秒前
fangang发布了新的文献求助30
9秒前
maclogos发布了新的文献求助10
9秒前
shmorby完成签到,获得积分10
9秒前
陈一一完成签到,获得积分10
9秒前
10秒前
10秒前
zyt完成签到,获得积分10
10秒前
yangxt-iga发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997