Multi-Constraint Latent Representation Learning for Prognosis Analysis Using Multi-Modal Data

计算机科学 过度拟合 人工智能 特征选择 机器学习 特征学习 特征(语言学) 排名(信息检索) 约束(计算机辅助设计) 模式识别(心理学) 数据挖掘 判别式 数学 人工神经网络 几何学 哲学 语言学
作者
Zhenyuan Ning,Zehui Lin,Qing Xiao,Denghui Du,Qianjin Feng,Wufan Chen,Yu Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 3737-3750 被引量:16
标识
DOI:10.1109/tnnls.2021.3112194
摘要

The Cox proportional hazard model has been widely applied to cancer prognosis prediction. Nowadays, multi-modal data, such as histopathological images and gene data, have advanced this field by providing histologic phenotype and genotype information. However, how to efficiently fuse and select the complementary information of high-dimensional multi-modal data remains challenging for Cox model, as it generally does not equip with feature fusion/selection mechanism. Many previous studies typically perform feature fusion/selection in the original feature space before Cox modeling. Alternatively, learning a latent shared feature space that is tailored for Cox model and simultaneously keeps sparsity is desirable. In addition, existing Cox-based models commonly pay little attention to the actual length of the observed time that may help to boost the model's performance. In this article, we propose a novel Cox-driven multi-constraint latent representation learning framework for prognosis analysis with multi-modal data. Specifically, for efficient feature fusion, a multi-modal latent space is learned via a bi-mapping approach under ranking and regression constraints. The ranking constraint utilizes the log-partial likelihood of Cox model to induce learning discriminative representations in a task-oriented manner. Meanwhile, the representations also benefit from regression constraint, which imposes the supervision of specific survival time on representation learning. To improve generalization and alleviate overfitting, we further introduce similarity and sparsity constraints to encourage extra consistency and sparseness. Extensive experiments on three datasets acquired from The Cancer Genome Atlas (TCGA) demonstrate that the proposed method is superior to state-of-the-art Cox-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百浪多息发布了新的文献求助10
刚刚
乐观的颦发布了新的文献求助10
1秒前
hahaha发布了新的文献求助10
1秒前
布布发布了新的文献求助10
2秒前
好运连连发布了新的文献求助10
2秒前
2秒前
3秒前
Summer完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
Steve完成签到,获得积分10
5秒前
993494543完成签到,获得积分10
5秒前
Camellia发布了新的文献求助10
6秒前
YY发布了新的文献求助30
6秒前
Hello应助百浪多息采纳,获得10
6秒前
王肖宁发布了新的文献求助10
7秒前
7秒前
9秒前
秋澄完成签到 ,获得积分10
12秒前
13秒前
时光中的微粒完成签到 ,获得积分10
14秒前
lixiaorui发布了新的文献求助10
14秒前
科研通AI2S应助山沟沟采纳,获得10
15秒前
百浪多息完成签到,获得积分10
17秒前
LL完成签到 ,获得积分10
17秒前
呼呼呼完成签到,获得积分10
17秒前
今后应助多情山蝶采纳,获得10
17秒前
17秒前
Ming完成签到,获得积分10
18秒前
geats发布了新的文献求助10
18秒前
20秒前
21秒前
果冻呀完成签到,获得积分10
21秒前
23秒前
24秒前
小马甲应助一个小胖子采纳,获得10
27秒前
完美世界应助TTUTT采纳,获得10
27秒前
29秒前
lixiaorui发布了新的文献求助10
31秒前
歪比巴卜发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536900
求助须知:如何正确求助?哪些是违规求助? 4624585
关于积分的说明 14592312
捐赠科研通 4565008
什么是DOI,文献DOI怎么找? 2502121
邀请新用户注册赠送积分活动 1480851
关于科研通互助平台的介绍 1452093