亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Constraint Latent Representation Learning for Prognosis Analysis Using Multi-Modal Data

计算机科学 过度拟合 人工智能 特征选择 机器学习 特征学习 特征(语言学) 排名(信息检索) 约束(计算机辅助设计) 模式识别(心理学) 数据挖掘 判别式 数学 人工神经网络 几何学 哲学 语言学
作者
Zhenyuan Ning,Zehui Lin,Qing Xiao,Denghui Du,Qianjin Feng,Wufan Chen,Yu Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 3737-3750 被引量:14
标识
DOI:10.1109/tnnls.2021.3112194
摘要

The Cox proportional hazard model has been widely applied to cancer prognosis prediction. Nowadays, multi-modal data, such as histopathological images and gene data, have advanced this field by providing histologic phenotype and genotype information. However, how to efficiently fuse and select the complementary information of high-dimensional multi-modal data remains challenging for Cox model, as it generally does not equip with feature fusion/selection mechanism. Many previous studies typically perform feature fusion/selection in the original feature space before Cox modeling. Alternatively, learning a latent shared feature space that is tailored for Cox model and simultaneously keeps sparsity is desirable. In addition, existing Cox-based models commonly pay little attention to the actual length of the observed time that may help to boost the model's performance. In this article, we propose a novel Cox-driven multi-constraint latent representation learning framework for prognosis analysis with multi-modal data. Specifically, for efficient feature fusion, a multi-modal latent space is learned via a bi-mapping approach under ranking and regression constraints. The ranking constraint utilizes the log-partial likelihood of Cox model to induce learning discriminative representations in a task-oriented manner. Meanwhile, the representations also benefit from regression constraint, which imposes the supervision of specific survival time on representation learning. To improve generalization and alleviate overfitting, we further introduce similarity and sparsity constraints to encourage extra consistency and sparseness. Extensive experiments on three datasets acquired from The Cancer Genome Atlas (TCGA) demonstrate that the proposed method is superior to state-of-the-art Cox-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PAIDAXXXX完成签到,获得积分10
8秒前
Xiaoping完成签到 ,获得积分10
27秒前
激动的似狮完成签到,获得积分10
44秒前
Marciu33发布了新的文献求助10
1分钟前
1分钟前
ataybabdallah发布了新的文献求助10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
yuqian发布了新的文献求助10
2分钟前
丘比特应助小可爱采纳,获得10
2分钟前
尘尘完成签到,获得积分10
2分钟前
uu完成签到 ,获得积分10
2分钟前
2分钟前
小可爱完成签到,获得积分10
2分钟前
小可爱发布了新的文献求助10
2分钟前
yuqian完成签到,获得积分20
2分钟前
彭于晏应助害羞的采波采纳,获得20
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
第二支羽毛完成签到 ,获得积分10
3分钟前
CQC关闭了CQC文献求助
3分钟前
3分钟前
研友_89Nm7L发布了新的文献求助10
4分钟前
Akim应助害羞的采波采纳,获得10
4分钟前
JamesPei应助研友_89Nm7L采纳,获得10
4分钟前
jing给jing的求助进行了留言
5分钟前
5分钟前
Ava应助lalalatiancai采纳,获得10
5分钟前
5分钟前
CodeCraft应助害羞的采波采纳,获得10
5分钟前
5分钟前
lalalatiancai发布了新的文献求助10
6分钟前
xiezhuochun完成签到 ,获得积分10
6分钟前
lalalatiancai完成签到,获得积分10
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671249
求助须知:如何正确求助?哪些是违规求助? 3228122
关于积分的说明 9778506
捐赠科研通 2938375
什么是DOI,文献DOI怎么找? 1609969
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 735991