T-CNN: Trilinear convolutional neural networks model for visual detection of plant diseases

模式识别(心理学) 深度学习 人工神经网络 计算机视觉 特征(语言学) 特征提取
作者
Dongfang Wang,Jun Wang,Wenrui Li,Peng Guan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:190: 106468-106468 被引量:34
标识
DOI:10.1016/j.compag.2021.106468
摘要

Plant diseases may threaten the safety of crops around the world, and timely detection of crop diseases and accurate determination of disease species are important to protect crop safety and control the spread of diseases. Recent studies have proposed the application of modern automatic recognition systems based on convolutional neural networks to the identification tasks of multiple crops and diseases. Although some research results have been achieved, studies have shown that these models are not optimal because they are susceptible to features unrelated to crop diseases, and have poor application ability in real-world environments. Therefore, this paper proposes a more concise method that separating the crop and disease identification and classify them independently, and demonstrates that it is more effective than the traditional crop-disease pairs approach. Meanwhile, we constructed a trilinear convolutional neural networks model using bilinear pooling and used images obtained in a real-world environment for the study of crop disease identification. The crop and disease identification accuracies achieved 99.99% and 99.7% on the test set in a controlled laboratory environment, and 84.11% and 75.58% on the test set in a real-world environment, respectively. The work in this paper improves the application value of crop disease identification research in the real-world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10完成签到 ,获得积分10
1秒前
龙共完成签到,获得积分10
2秒前
3秒前
5秒前
体贴怜翠发布了新的文献求助10
6秒前
可爱的函函应助tomorrow采纳,获得10
7秒前
自觉从筠完成签到 ,获得积分10
9秒前
逃亡的小狗完成签到,获得积分10
9秒前
月光完成签到,获得积分10
9秒前
小马甲应助也一样采纳,获得10
10秒前
路鸣泽发布了新的文献求助10
10秒前
10秒前
10秒前
ffff完成签到,获得积分10
11秒前
longliang发布了新的文献求助10
14秒前
科研通AI2S应助hhh2018687采纳,获得30
16秒前
16秒前
香蕉觅云应助cai采纳,获得10
17秒前
轮海完成签到,获得积分10
18秒前
月光发布了新的文献求助10
19秒前
20秒前
qqqwww完成签到,获得积分10
21秒前
longliang完成签到,获得积分10
21秒前
也一样发布了新的文献求助10
22秒前
23秒前
Orange应助ograss采纳,获得10
24秒前
深情安青应助茶叙汤言采纳,获得30
25秒前
灰月发布了新的文献求助10
26秒前
Owen应助故意的皮皮虾采纳,获得10
27秒前
ppll3906发布了新的文献求助10
27秒前
29秒前
Yifan2024应助萝卜采纳,获得10
29秒前
路鸣泽完成签到,获得积分10
29秒前
酷酷薯片发布了新的文献求助10
32秒前
32秒前
cdercder应助月光采纳,获得10
33秒前
chu完成签到,获得积分10
34秒前
34秒前
安详的绿竹完成签到 ,获得积分10
36秒前
36秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379738
求助须知:如何正确求助?哪些是违规求助? 2995241
关于积分的说明 8762216
捐赠科研通 2680122
什么是DOI,文献DOI怎么找? 1467807
科研通“疑难数据库(出版商)”最低求助积分说明 678787
邀请新用户注册赠送积分活动 670640