Atomic Structure of Dislocations and Grain Boundaries in Two-Dimensional PtSe2

凝聚态物理 Burgers向量 材料科学 晶界 位错 方向错误 原子单位 结晶学 部分位错 扫描透射电子显微镜 几何学 分子物理学 透射电子显微镜 物理 化学 纳米技术 微观结构 量子力学 数学
作者
Jun Chen,Yanming Wang,Wenshuo Xu,Yi Wen,Gyeong Hee Ryu,Jeffrey C. Grossman,Jamie H. Warner
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (10): 16748-16759 被引量:2
标识
DOI:10.1021/acsnano.1c06736
摘要

Each 2D material has a distinct structure for its grain boundary and dislocation cores, which is dictated by both the crystal lattice geometry and the elements that participate in bonding. For the class of noble metal dichalcogenides, this has yet to be thoroughly investigated at the atomic scale. Here, we examine the atomic structure of the dislocations and grain boundaries (GBs) in two-dimensional PtSe2, using atomic-resolution annular dark field scanning transmission electron microscopy, combined with density functional theory and empirical force field calculations. The PtSe2 we study adopts the 1T phase in large-area polycrystalline films with numerous planar tilt GB distinct dislocations, including 5|7+Se and 4|4|8+Se polygons, in tilt-angle monolayer GBs, with features sharply distinguished from those in 2H-phase TMDs. On the basis of dislocation cores, the GB structures are investigated in terms of pathways of dislocation chain arrangement, dislocation core distributions in different misorientation angles, and 2D strain fields induced. Based on the Frank-Bilby equation, the deduced Burgers vector magnitude is close to the lattice constant of 1T-PtSe2, building the quantitative relationship of dislocation spacings and small GB angles. The 30° GBs are most frequently formed as a stitched interface between the armchair and zigzag lattices, constructed by a string of 5|7+Se dislocations asymmetrically with a small deviation angle. Another special angle GB, mirror twin 60° GB, is also mapped linearly by metal-condensed asymmetric or Se-rich symmetric dislocations. This report gives atomic-level insights into the GBs and dislocations in 1T-phase noble metal TMD PtSe2, which is a promising material to underpin extending properties of 2D materials by local structure engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
逐风给逐风的求助进行了留言
2秒前
科研通AI5应助灌饼采纳,获得30
2秒前
Owen应助Zzzzzzzzzzz采纳,获得10
3秒前
4秒前
5秒前
巫马秋寒应助笑点低可乐采纳,获得10
5秒前
xuex1完成签到,获得积分10
5秒前
情怀应助阳光的雁山采纳,获得10
7秒前
斯文败类应助jy采纳,获得10
7秒前
7秒前
日月轮回发布了新的文献求助10
8秒前
36456657应助木香采纳,获得10
9秒前
无花果应助ns采纳,获得30
9秒前
刘铭晨完成签到,获得积分10
9秒前
10秒前
YY发布了新的文献求助10
10秒前
Rrr发布了新的文献求助10
11秒前
学术蠕虫发布了新的文献求助10
11秒前
11秒前
miumiuka完成签到,获得积分10
12秒前
个性的薯片应助lyt采纳,获得20
14秒前
sweetbearm应助寒涛先生采纳,获得10
15秒前
wanci应助YY采纳,获得10
16秒前
16秒前
17秒前
17秒前
18秒前
HC完成签到 ,获得积分10
19秒前
姚姚的赵赵完成签到,获得积分10
19秒前
JamesPei应助大豪子采纳,获得30
20秒前
jy发布了新的文献求助10
20秒前
20秒前
陆靖易发布了新的文献求助10
20秒前
LQW完成签到,获得积分20
21秒前
22秒前
plant完成签到,获得积分10
22秒前
lyt完成签到,获得积分10
22秒前
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808