Asymmetric volatility spillovers between crude oil and China's financial markets

波动性(金融) 波动率互换 波动性风险溢价 溢出效应 经济 波动微笑 远期波动率 原油 隐含波动率 金融经济学 货币经济学 金融市场 财务 宏观经济学 石油工程 工程类
作者
Hu Wang,Shouwei Li
出处
期刊:Energy [Elsevier]
卷期号:233: 121168-121168 被引量:45
标识
DOI:10.1016/j.energy.2021.121168
摘要

In this paper, we combine the DCC-MIDAS model with asymmetry effects with the DY spillover index model and study the asymmetric volatility spillover relationship between the international crude oil market and three major financial markets of China. Based on the high-frequency daily data from 2003 to 2019, we divide the volatility caused by positive return and negative return into good volatility and bad volatility, we use our methods to characterize volatility spillovers across crude oil market, stock market, bond market and gold market from the perspectives of long-term and short-term volatilities, as well as good and bad volatilities. The results show that there are asymmetric volatility spillover effects between the crude oil market and different financial markets in China. The long-term volatility spillover effects are significantly higher than the short-term volatility spillover effects of crude oil market, and the good volatility spillovers effects are greater than the bad volatility spillovers effects. China's financial markets are dominated by the bad volatility spillovers during financial disasters affected by the crude oil market, at the same time, the bad total volatility spillovers rise sharply and are periodically higher than the good volatility spillovers. In addition, gold under short-term conditions can effectively hedge the risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助水獭采纳,获得10
1秒前
1秒前
1秒前
研友_nv2r4n发布了新的文献求助10
2秒前
喵叽发布了新的文献求助10
2秒前
槐夏完成签到,获得积分10
2秒前
3秒前
科研通AI5应助su采纳,获得10
3秒前
3秒前
科目三应助MJQ采纳,获得30
3秒前
3秒前
慕子发布了新的文献求助20
4秒前
lumangxiaozi完成签到,获得积分10
4秒前
积极的凌波完成签到,获得积分10
4秒前
xiaxiao应助小小酥采纳,获得100
4秒前
523完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
6秒前
Hupoo发布了新的文献求助10
6秒前
传奇3应助冬瓜有内涵呐采纳,获得10
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
Aurora发布了新的文献求助10
7秒前
7秒前
Ava应助科研通管家采纳,获得10
7秒前
Chen发布了新的文献求助10
7秒前
prosperp应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
kingwill应助科研通管家采纳,获得20
8秒前
伍贰肆发布了新的文献求助10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762