Advanced Nanocarbons for Enhanced Performance and Durability of Platinum Catalysts in Proton Exchange Membrane Fuel Cells

质子交换膜燃料电池 材料科学 化学工程 催化作用 腐蚀 纳米技术 溶解 耐久性 纳米颗粒 铂金 纳米结构 碳纤维 燃料电池 复合材料 化学 工程类 复合数 生物化学
作者
Zhi Qiao,Chenyu Wang,Yachao Zeng,Jacob S. Spendelow,Gang Wu
出处
期刊:Small [Wiley]
卷期号:17 (48) 被引量:69
标识
DOI:10.1002/smll.202006805
摘要

Insufficient stability of current carbon supported Pt and Pt alloy catalysts is a significant barrier for proton-exchange membrane fuel cells (PEMFCs). As a primary degradation cause to trigger Pt nanoparticle migration, dissolution, and aggregation, carbon corrosion remains a significant challenge. Compared with enhancing Pt and PtM alloy particle stability, improving support stability is rather challenging due to carbon's thermodynamic instability under fuel cell operation. In recent years, significant efforts have been made to develop highly durable carbon-based supports concerning innovative nanostructure design and synthesis along with mechanistic understanding. This review critically discusses recent progress in developing carbon-based materials for Pt catalysts and provides synthesis-structure-performance correlations to elucidate underlying stability enhancement mechanisms. The mechanisms and impacts of carbon support degradation on Pt catalyst performance are first discussed. The general strategies are summarized to tailor the carbon structures and strengthen the metal-support interactions, followed by discussions on how these designs lead to enhanced support stability. Based on current experimental and theoretical studies, the critical features of carbon supports are analyzed concerning their impacts on the performance and durability of Pt catalysts in fuel cells. Finally, the perspectives are shared on future directions to develop advanced carbon materials with favorable morphologies and nanostructures to increase Pt utilization, strengthen metal-support interactions, facilitate mass/charge transfer, and enhance corrosion resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crazyant完成签到,获得积分20
刚刚
小奶球完成签到,获得积分20
刚刚
我是老大应助simiger采纳,获得10
1秒前
共享精神应助always采纳,获得10
1秒前
1秒前
Research完成签到 ,获得积分10
1秒前
50257055发布了新的文献求助10
1秒前
典雅的夜安完成签到,获得积分10
2秒前
jcxl发布了新的文献求助10
2秒前
多情的夜安完成签到,获得积分10
2秒前
派大星和海绵宝宝完成签到,获得积分10
2秒前
青城昊发布了新的文献求助10
3秒前
crazyant发布了新的文献求助10
3秒前
幽默的凡完成签到 ,获得积分10
3秒前
RenHP完成签到,获得积分10
3秒前
小雅完成签到 ,获得积分0
4秒前
JYX完成签到 ,获得积分10
4秒前
恒河鲤完成签到,获得积分10
4秒前
咸鱼之王完成签到,获得积分10
5秒前
cm完成签到 ,获得积分10
6秒前
畅快八宝粥完成签到,获得积分10
7秒前
暴躁的雁易完成签到,获得积分10
7秒前
清爽的碧空完成签到,获得积分10
7秒前
健忘的荔枝完成签到 ,获得积分10
7秒前
孟惜儿完成签到,获得积分10
8秒前
anny2022完成签到,获得积分10
9秒前
Y.B.Cao完成签到,获得积分10
9秒前
lovein发布了新的文献求助10
9秒前
大胆的不斜完成签到,获得积分10
10秒前
10秒前
HEROER完成签到,获得积分10
11秒前
11秒前
AbOO完成签到,获得积分10
12秒前
13秒前
always完成签到,获得积分20
13秒前
咩咩咩咩咩咩完成签到,获得积分10
14秒前
HEROER发布了新的文献求助10
15秒前
活泼的从蓉完成签到,获得积分10
16秒前
科研小呆瓜应助有机小鸟采纳,获得10
16秒前
小美酱完成签到 ,获得积分0
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311457
求助须知:如何正确求助?哪些是违规求助? 2944239
关于积分的说明 8518079
捐赠科研通 2619580
什么是DOI,文献DOI怎么找? 1432472
科研通“疑难数据库(出版商)”最低求助积分说明 664671
邀请新用户注册赠送积分活动 649869