亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Iterative Robust Graph for Unsupervised Change Detection of Heterogeneous Remote Sensing Images

计算机科学 分割 图像分割 人工智能 图形 切割 模式识别(心理学) 变更检测 迭代和增量开发 计算机视觉 理论计算机科学 软件工程
作者
Yuli Sun,Lin Lei,Dongdong Guan,Gangyao Kuang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 6277-6291 被引量:82
标识
DOI:10.1109/tip.2021.3093766
摘要

This work presents a robust graph mapping approach for the unsupervised heterogeneous change detection problem in remote sensing imagery. To address the challenge that heterogeneous images cannot be directly compared due to different imaging mechanisms, we take advantage of the fact that the heterogeneous images share the same structure information for the same ground object, which is imaging modality-invariant. The proposed method first constructs a robust K-nearest neighbor graph to represent the structure of each image, and then compares the graphs within the same image domain by means of graph mapping to calculate the forward and backward difference images, which can avoid the confusion of heterogeneous data. Finally, it detects the changes through a Markovian co-segmentation model that can fuse the forward and backward difference images in the segmentation process, which can be solved by the co-graph cut. Once the changed areas are detected by the Markovian co-segmentation, they will be propagated back into the graph construction process to reduce the influence of changed neighbors. This iterative framework makes the graph more robust and thus improves the final detection performance. Experimental results on different data sets confirm the effectiveness of the proposed method. Source code of the proposed method is made available at https://github.com/yulisun/IRG-McS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
1111完成签到 ,获得积分10
6秒前
英姑应助NZH采纳,获得10
7秒前
Backto1998发布了新的文献求助10
7秒前
13秒前
SciGPT应助zhangqin采纳,获得10
13秒前
16秒前
ma完成签到,获得积分10
18秒前
18秒前
Ava应助好文章快快来采纳,获得10
21秒前
诚心擎苍发布了新的文献求助10
21秒前
24秒前
ma发布了新的文献求助10
25秒前
27秒前
冷冷完成签到 ,获得积分10
30秒前
Jasper应助小小采纳,获得10
32秒前
无私的梦凡完成签到,获得积分10
40秒前
wangjuan完成签到,获得积分10
45秒前
47秒前
小耗子完成签到,获得积分10
48秒前
50秒前
50秒前
51秒前
53秒前
54秒前
wf发布了新的文献求助10
58秒前
小雨点完成签到 ,获得积分10
1分钟前
1分钟前
跳羚完成签到,获得积分10
1分钟前
1分钟前
杳鸢完成签到,获得积分0
1分钟前
1分钟前
Cynthia完成签到,获得积分10
1分钟前
NZH发布了新的文献求助10
1分钟前
1分钟前
陪你长大发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455594
求助须知:如何正确求助?哪些是违规求助? 3050813
关于积分的说明 9022815
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502707
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387