Post-epidemic factors influencing customer's booking intent for a hotel or leisure spot: an empirical study

款待 前提 营销 业务 失业 服务(商务) 旅游 酒店业 经济增长 经济 地理 考古 哲学 语言学
作者
Praveen Ranjan Srivastava,Kinshuk Sengupta,Ajay Kumar,Baidyanath Biswas,Alessio Ishizaka
出处
期刊:Journal of Enterprise Information Management [Emerald (MCB UP)]
卷期号:35 (1): 78-99 被引量:30
标识
DOI:10.1108/jeim-03-2021-0137
摘要

Purpose The new coronavirus is a highly infectious disease with mutating variants leading to pervasive risk around geographies and public health system. The economy has been suffering due to the strategic lockdown adopted by the local administrative bodies, and in most of the countries, it is further leading to a major wave of unemployment with millions of job and business losses affecting the hotels, travel and tourism industry widely. To attain a sustainable business in the post-pandemic situations, the industry now must think of information system approaches to convince tourists to feel safe with the most hygienic hospitality and services to be offered in any property. The key aspect of the study is to provide the impact of new-age AI-driven technology solutions that will dominate the future direction of the modernized hospitality industry promising robust health-safety measures in a hotel, and further help create sustainable business and leisure travel facilities to cope with post-epidemic scenarios. Design/methodology/approach The study emphasizes to provide a robust technology-oriented framework based on a mixed research method that would help hotels to adopt and implement new-age AI-driven solution within the hotel premise to serve customers with at most hygiene, contactless service and thereafter, aiming for faster recovery of businesses and regaining customer trust to fuel booking intent in the post-epidemic scenario. Findings The paper provides a technology-focused solution that would impact hotel industries' post-pandemic scenario. The study contributes to helping boost the tourism industry using information management solutions such as biosensors, robotic room services and contactless hosting. The findings show the adoption of robots/RPA solutions and Biosensors by the industry will be a disruptive paradigm shift. Originality/value The study expands the scope of research in information technology and management with a focus on the hospitality industry while contributing to new factors impacting customer buying behavior in the industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇小霸王完成签到,获得积分10
1秒前
yusheng发布了新的文献求助10
1秒前
2秒前
yang发布了新的文献求助10
2秒前
2秒前
liherong完成签到,获得积分10
2秒前
3秒前
3秒前
刚刚完成签到,获得积分20
4秒前
猪猪hero发布了新的文献求助30
4秒前
lu完成签到,获得积分10
5秒前
6秒前
6秒前
健壮的面包完成签到,获得积分20
6秒前
7秒前
Elytra发布了新的文献求助10
7秒前
CodeCraft应助Inspiring采纳,获得10
8秒前
wang完成签到 ,获得积分10
8秒前
Kevin完成签到,获得积分10
8秒前
8秒前
在水一方应助实验室同学采纳,获得10
9秒前
天天快乐应助火鸡味锅巴采纳,获得10
9秒前
包容的醉冬完成签到,获得积分20
9秒前
深情安青应助炙热的雪旋采纳,获得10
10秒前
11秒前
莃.发布了新的文献求助10
12秒前
13秒前
星月发布了新的文献求助10
13秒前
无敌最俊朗应助z0采纳,获得10
13秒前
橙子完成签到,获得积分10
13秒前
13秒前
Orange应助小谢采纳,获得10
13秒前
CCCC发布了新的文献求助30
13秒前
14秒前
执着的导师完成签到,获得积分10
15秒前
exquisite完成签到,获得积分10
16秒前
Elytra完成签到,获得积分10
16秒前
17秒前
香蕉冰旋发布了新的文献求助10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563810
求助须知:如何正确求助?哪些是违规求助? 3137001
关于积分的说明 9420496
捐赠科研通 2837441
什么是DOI,文献DOI怎么找? 1559833
邀请新用户注册赠送积分活动 729198
科研通“疑难数据库(出版商)”最低求助积分说明 717171