Machine Learning for the Prediction of Molecular Markers in Glioma on Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis

医学 磁共振成像 胶质瘤 异柠檬酸脱氢酶 荟萃分析 亚型 O-6-甲基鸟嘌呤-DNA甲基转移酶 肿瘤科 内科学 生物信息学 甲基化 计算生物学 放射科 甲基转移酶 基因 遗传学 计算机科学 生物 癌症研究 程序设计语言 生物化学
作者
Anne Jian,Kevin Jang,Maurizio Manuguerra,Sidong Liu,John Magnussen,Antonio Di Ieva
出处
期刊:Neurosurgery [Oxford University Press]
卷期号:89 (1): 31-44 被引量:55
标识
DOI:10.1093/neuros/nyab103
摘要

Molecular characterization of glioma has implications for prognosis, treatment planning, and prediction of treatment response. Current histopathology is limited by intratumoral heterogeneity and variability in detection methods. Advances in computational techniques have led to interest in mining quantitative imaging features to noninvasively detect genetic mutations.To evaluate the diagnostic accuracy of machine learning (ML) models in molecular subtyping gliomas on preoperative magnetic resonance imaging (MRI).A systematic search was performed following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify studies up to April 1, 2020. Methodological quality of studies was assessed using the Quality Assessment for Diagnostic Accuracy Studies (QUADAS)-2. Diagnostic performance estimates were obtained using a bivariate model and heterogeneity was explored using metaregression.Forty-four original articles were included. The pooled sensitivity and specificity for predicting isocitrate dehydrogenase (IDH) mutation in training datasets were 0.88 (95% CI 0.83-0.91) and 0.86 (95% CI 0.79-0.91), respectively, and 0.83 to 0.85 in validation sets. Use of data augmentation and MRI sequence type were weakly associated with heterogeneity. Both O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation and 1p/19q codeletion could be predicted with a pooled sensitivity and specificity between 0.76 and 0.83 in training datasets.ML application to preoperative MRI demonstrated promising results for predicting IDH mutation, MGMT methylation, and 1p/19q codeletion in glioma. Optimized ML models could lead to a noninvasive, objective tool that captures molecular information important for clinical decision making. Future studies should use multicenter data, external validation and investigate clinical feasibility of ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bdvdsrwteges完成签到,获得积分10
刚刚
鱼雷完成签到,获得积分10
1秒前
1秒前
天天快乐应助喜洋洋采纳,获得10
1秒前
PANSIXUAN完成签到 ,获得积分10
2秒前
善良香岚发布了新的文献求助10
2秒前
2秒前
huizi完成签到,获得积分20
2秒前
RichardZ完成签到,获得积分10
2秒前
2秒前
左左发布了新的文献求助10
3秒前
执着的怜寒应助哈哈哈haha采纳,获得40
3秒前
Cassie完成签到 ,获得积分10
4秒前
4秒前
雄i完成签到,获得积分10
4秒前
Chenly完成签到,获得积分10
5秒前
科目三应助韭黄采纳,获得10
5秒前
5秒前
轻松笙发布了新的文献求助10
5秒前
7秒前
7秒前
a1oft发布了新的文献求助10
8秒前
觅桃乌龙完成签到,获得积分10
8秒前
9秒前
melodyezi发布了新的文献求助10
10秒前
10秒前
FFFFFFF应助柚子采纳,获得10
10秒前
9℃发布了新的文献求助10
10秒前
MailkMonk发布了新的文献求助10
10秒前
ZQ完成签到,获得积分10
10秒前
10秒前
wcy发布了新的文献求助10
11秒前
11秒前
尹博士完成签到,获得积分10
11秒前
迟大猫应助周士乐采纳,获得10
12秒前
追寻的筝发布了新的文献求助10
12秒前
喜洋洋发布了新的文献求助10
12秒前
NANA完成签到,获得积分10
12秒前
乐乐应助协和_子鱼采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759