Machine Learning for the Prediction of Molecular Markers in Glioma on Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis

医学 磁共振成像 胶质瘤 异柠檬酸脱氢酶 荟萃分析 亚型 O-6-甲基鸟嘌呤-DNA甲基转移酶 肿瘤科 内科学 生物信息学 甲基化 计算生物学 放射科 甲基转移酶 基因 遗传学 计算机科学 生物 癌症研究 程序设计语言 生物化学
作者
Anne Jian,Kevin Jang,Maurizio Manuguerra,Sidong Liu,John Magnussen,Antonio Di Ieva
出处
期刊:Neurosurgery [Oxford University Press]
卷期号:89 (1): 31-44 被引量:50
标识
DOI:10.1093/neuros/nyab103
摘要

Abstract BACKGROUND Molecular characterization of glioma has implications for prognosis, treatment planning, and prediction of treatment response. Current histopathology is limited by intratumoral heterogeneity and variability in detection methods. Advances in computational techniques have led to interest in mining quantitative imaging features to noninvasively detect genetic mutations. OBJECTIVE To evaluate the diagnostic accuracy of machine learning (ML) models in molecular subtyping gliomas on preoperative magnetic resonance imaging (MRI). METHODS A systematic search was performed following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify studies up to April 1, 2020. Methodological quality of studies was assessed using the Quality Assessment for Diagnostic Accuracy Studies (QUADAS)-2. Diagnostic performance estimates were obtained using a bivariate model and heterogeneity was explored using metaregression. RESULTS Forty-four original articles were included. The pooled sensitivity and specificity for predicting isocitrate dehydrogenase (IDH) mutation in training datasets were 0.88 (95% CI 0.83-0.91) and 0.86 (95% CI 0.79-0.91), respectively, and 0.83 to 0.85 in validation sets. Use of data augmentation and MRI sequence type were weakly associated with heterogeneity. Both O 6 -methylguanine-DNA methyltransferase (MGMT) gene promoter methylation and 1p/19q codeletion could be predicted with a pooled sensitivity and specificity between 0.76 and 0.83 in training datasets. CONCLUSION ML application to preoperative MRI demonstrated promising results for predicting IDH mutation, MGMT methylation, and 1p/19q codeletion in glioma. Optimized ML models could lead to a noninvasive, objective tool that captures molecular information important for clinical decision making. Future studies should use multicenter data, external validation and investigate clinical feasibility of ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮帆布鞋完成签到,获得积分10
1秒前
xu发布了新的文献求助10
1秒前
Ly发布了新的文献求助10
1秒前
jioujg完成签到,获得积分10
1秒前
jioujg发布了新的文献求助10
4秒前
米六发布了新的文献求助10
4秒前
6秒前
xiaogang127发布了新的文献求助10
6秒前
CodeCraft应助河道蟹采纳,获得10
6秒前
leon发布了新的文献求助10
6秒前
香蕉觅云应助tang采纳,获得10
7秒前
lyric完成签到,获得积分10
7秒前
寂静岭完成签到,获得积分10
8秒前
故笺发布了新的文献求助10
9秒前
瘦瘦达完成签到,获得积分10
9秒前
may完成签到 ,获得积分10
9秒前
万能图书馆应助简单如容采纳,获得10
9秒前
10秒前
sduweiyu完成签到 ,获得积分10
10秒前
Lojong完成签到,获得积分10
11秒前
Cu完成签到 ,获得积分10
11秒前
12秒前
冷语发布了新的文献求助10
12秒前
邹友亮发布了新的文献求助10
13秒前
天峰完成签到,获得积分10
13秒前
龚明洋1完成签到,获得积分10
14秒前
爆爆完成签到,获得积分10
14秒前
汉堡包应助郝宝真采纳,获得10
15秒前
NexusExplorer应助自信的海燕采纳,获得10
15秒前
酷炫大白完成签到,获得积分10
16秒前
imbecile完成签到,获得积分10
16秒前
酷波er应助激昂的背包采纳,获得10
16秒前
共享精神应助简单如容采纳,获得10
17秒前
17秒前
ddd完成签到,获得积分10
18秒前
18秒前
无花果应助淡淡的小蜜蜂采纳,获得10
18秒前
小山隹完成签到,获得积分10
19秒前
养一只鱼完成签到 ,获得积分10
19秒前
范仪彬完成签到,获得积分20
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162769
求助须知:如何正确求助?哪些是违规求助? 2813685
关于积分的说明 7901577
捐赠科研通 2473296
什么是DOI,文献DOI怎么找? 1316715
科研通“疑难数据库(出版商)”最低求助积分说明 631516
版权声明 602175