Application of YOLO Object Detection Network In Weld Surface Defect Detection

焊接 机器人焊接 机器人 人工智能 计算机科学 计算机视觉 目标检测 机器视觉 工厂(面向对象编程) 领域(数学) 工程类 机械工程 模式识别(心理学) 数学 程序设计语言 纯数学
作者
Yinlong Zuo,Jintao. Wang,Jilai Song
标识
DOI:10.1109/cyber53097.2021.9588269
摘要

As industrial production becomes more modern and intelligent today, the inspection of product quality of the workshop is becoming more and more accustomed to replacing the old manual visual inspection methods with automated inspection systems. In the welding field, automated welding robots are not only used in traditional large-scale automobile assembly lines. In more general welding work, welding robots also plays an important role. The inspection of the welding quality of the welding robot is mainly to detect the four main types of weld defects. Compared to traditional defect classification based on support vector machines and defect detection based on template matching, this paper uses a welding surface defect detection system designed based on deep learning methods. By working with workshop welding experts, a large-scale image of nearly 5000 pictures is built. Large-scale weld defect datasets, while using the real-time and accuracy of the YOLO series of deep learning object detection frameworks, the weld defects detection model reaches 75.5% mean average precision(mAP) in constructed weld defect data set. In addition, the construction cost of the detection model and the deployment time of the detection system are greatly reduced. During the field test of the system in the workshop, among a batch of welding workpieces provided by the factory, the detection accuracy of weld defects reached 71%, which initially met the requirements of the workshop for an automated defect detection system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲨鱼辣椒发布了新的文献求助10
1秒前
shaofeng完成签到,获得积分10
1秒前
大侠王恒完成签到,获得积分10
2秒前
mikasa完成签到,获得积分10
4秒前
光芒万丈完成签到 ,获得积分20
5秒前
Zyk完成签到,获得积分10
6秒前
小灰灰完成签到 ,获得积分10
9秒前
10秒前
ziyou完成签到,获得积分20
10秒前
12秒前
在水一方应助Tong采纳,获得10
18秒前
ZJ发布了新的文献求助10
20秒前
23秒前
毛毛完成签到,获得积分10
24秒前
yxdjzwx完成签到,获得积分10
26秒前
27秒前
Orange应助aldblm采纳,获得10
27秒前
小马甲应助yjmmm采纳,获得10
28秒前
28秒前
31秒前
科研通AI2S应助白小黑采纳,获得10
31秒前
EYU发布了新的文献求助10
32秒前
mirandaaa应助念安采纳,获得10
32秒前
34秒前
勤奋映之发布了新的文献求助10
36秒前
43秒前
yaswer完成签到,获得积分10
43秒前
wanci应助科研通管家采纳,获得10
47秒前
FashionBoy应助ZJ采纳,获得10
47秒前
1111111111应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
搜集达人应助科研通管家采纳,获得10
47秒前
领导范儿应助勤奋映之采纳,获得10
47秒前
桐桐应助科研通管家采纳,获得10
47秒前
打打应助科研通管家采纳,获得10
47秒前
Hello应助geyuanhong采纳,获得10
48秒前
爆米花应助超级诗桃采纳,获得10
51秒前
53秒前
白樱恋曲发布了新的文献求助10
57秒前
57秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3355788
求助须知:如何正确求助?哪些是违规求助? 2979594
关于积分的说明 8690790
捐赠科研通 2661065
什么是DOI,文献DOI怎么找? 1457075
科研通“疑难数据库(出版商)”最低求助积分说明 674646
邀请新用户注册赠送积分活动 665477