材料科学
弹性体
液晶
光子晶体
光子学
结构着色
各向同性
光电子学
日光
胆甾液晶
光学
纳米技术
复合材料
物理
作者
Saddam Hussain,Soo‐Young Park
标识
DOI:10.1021/acsami.1c18697
摘要
The unique combination of the rubber-like property and the photonic helicoidal structure of cholesteric liquid-crystal elastomers (CLCEs) results in one-handed circular polarized light reflection, the wavelength of which is dictated by the Bragg relationship. Herein, a highly stretchable mechanochromic photonic CLCE film was fabricated by cross-linking mesogenic oligomers having thiol terminal groups, which further reacted to form disulfide (-S-S-) linkages. The mechanically stretched photonic CLCE film reflected both right- and left-handed circular polarized lights with a blue-shifted color. The helicoidal pitch and handedness controlled by the applied strain were programmed through a dynamic exchange reaction between the -S-S- linkages, thus realizing the patterning at selective regions. The pattern almost vanished under unpolarized daylight but was visible under circularly polarized light when the patterned photonic CLCE film had been heated above its isotropic temperature. The hidden patterns of the heat-treated CLCE film reappeared under unpolarized daylight when stretched, demonstrating a data encryption ability. These patterned photonic elastomers can be uniquely used in sensors, actuators, soft robotics, flexible displays, data encryption, and anticounterfeiting applications with a mechanochromic camouflage response.
科研通智能强力驱动
Strongly Powered by AbleSci AI