微生物群
生物
蔷薇花
基因组
疾病
帕金森病
人口
遗传学
医学
内科学
基因
环境卫生
细菌
拟杆菌
作者
Tzi Shin Toh,Chun Wie Chong,Shen‐Yang Lim,Jeff S. Bowman,Mihai Cirstea,Chin‐Hsien Lin,Chieh‐Chang Chen,Silke Appel‐Cresswell,B. Brett Finlay,Ai Huey Tan
标识
DOI:10.1016/j.parkreldis.2021.11.017
摘要
Abstract
Background
Gut microbiome alterations have been reported in Parkinson's disease (PD), but with heterogenous findings, likely due to differences in study methodology and population. We investigated the main microbiome alterations in PD, their correlations with disease severity, and the impact of study and geographical differences. Methods
After systematic screening, raw 16S rRNA gene sequences were obtained from ten case-control studies totaling 1703 subjects (969 PD, 734 non-PD controls; seven predominantly Caucasian and three predominantly non-Caucasian cohorts). Quality-filtered gene sequences were analyzed using a phylogenetic placement approach, which precludes the need for the sequences to be sourced from similar regions in the 16S rRNA gene, thus allowing a direct comparison between studies. Differences in microbiome composition and correlations with clinical variables were analyzed using multivariate statistics. Results
Study and geography accounted for the largest variations in gut microbiome composition. Microbiome composition was more similar for subjects from the same study than those from different studies with the same disease status. Microbiome composition significantly differed between Caucasian and non-Caucasian populations. After accounting for study differences, microbiome composition was significantly different in PD vs. controls (albeit with a marginal effect size), with several distinctive features including increased abundances of Megasphaera and Akkermansia, and reduced Roseburia. Several bacterial genera correlated with PD motor severity, motor response complications and cognitive function. Conclusion
Consistent microbial features in PD merit further investigation. The large variations in microbiome findings of PD patients underscore the need for greater harmonization of future research, and personalized approaches in designing microbial-directed therapeutics.
科研通智能强力驱动
Strongly Powered by AbleSci AI