Electro-oxidation of 5-hydroxymethylfurfural (HMFOR) is a promising green approach to realize the conversion of biomass into value-added chemicals. However, considering the complexity of the molecular structure of HMF, an in-depth understanding of the electrocatalytic behavior of HMFOR has rarely been investigated. Herein, the electrocatalytic mechanism of HMFOR on nickel nitride (Ni3N) is elucidated by operando X-ray absorption spectroscopy (XAS), in situ Raman, quasi in situ X-ray photoelectron spectroscopy (XPS), and operando electrochemical impedance spectroscopy (EIS), respectively. The activity origin is proved to be Ni2+δN(OH)ads generated by the adsorbed hydroxyl group. Moreover, HMFOR on Ni3N relates to a two-step reaction: Initially, the applied potential drives Ni atoms to lose electrons and adsorb OH− after 1.35 VRHE, giving rise to Ni2+δN(OH)ads with the electrophilic oxygen; then Ni2+δN(OH)ads seizes protons and electrons from HMF and leaves as H2O spontaneously. Furthermore, the high electrolyte alkalinity favors the HMFOR process due to the increased active species (Ni2+δN(OH)ads) and the enhanced adsorption of HMF on the Ni3N surface. This work could provide an in-depth understanding of the electrocatalytic mechanism of HMFOR on Ni3N and demonstrate the alkalinity effect of the electrolyte on the electrocatalytic performance of HMFOR.