镍
碱度
化学
生物量(生态学)
无机化学
氮化物
材料科学
化学工程
冶金
纳米技术
生态学
生物
物理化学
图层(电子)
工程类
作者
Bo Zhou,Chung‐Li Dong,Yucheng Huang,Nana Zhang,Yandong Wu,Yuxuan Lu,Yue Xu,Zhaohui Xiao,Yuqin Zou,Shuangyin Wang
标识
DOI:10.1016/j.jechem.2021.02.026
摘要
Electro-oxidation of 5-hydroxymethylfurfural (HMFOR) is a promising green approach to realize the conversion of biomass into value-added chemicals. However, considering the complexity of the molecular structure of HMF, an in-depth understanding of the electrocatalytic behavior of HMFOR has rarely been investigated. Herein, the electrocatalytic mechanism of HMFOR on nickel nitride (Ni3N) is elucidated by operando X-ray absorption spectroscopy (XAS), in situ Raman, quasi in situ X-ray photoelectron spectroscopy (XPS), and operando electrochemical impedance spectroscopy (EIS), respectively. The activity origin is proved to be Ni2+δN(OH)ads generated by the adsorbed hydroxyl group. Moreover, HMFOR on Ni3N relates to a two-step reaction: Initially, the applied potential drives Ni atoms to lose electrons and adsorb OH− after 1.35 VRHE, giving rise to Ni2+δN(OH)ads with the electrophilic oxygen; then Ni2+δN(OH)ads seizes protons and electrons from HMF and leaves as H2O spontaneously. Furthermore, the high electrolyte alkalinity favors the HMFOR process due to the increased active species (Ni2+δN(OH)ads) and the enhanced adsorption of HMF on the Ni3N surface. This work could provide an in-depth understanding of the electrocatalytic mechanism of HMFOR on Ni3N and demonstrate the alkalinity effect of the electrolyte on the electrocatalytic performance of HMFOR.
科研通智能强力驱动
Strongly Powered by AbleSci AI